Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, 138632, Singapore.
Science. 2018 Jan 26;359(6374):447-452. doi: 10.1126/science.aap8716. Epub 2018 Jan 25.
Pure magnesium exhibits poor ductility owing to pyramidal [Formula: see text] dislocation transformations to immobile structures, making this lowest-density structural metal unusable for many applications where it could enhance energy efficiency. We show why magnesium can be made ductile by specific dilute solute additions, which increase the [Formula: see text] cross-slip and multiplication rates to levels much faster than the deleterious [Formula: see text] transformation, enabling both favorable texture during processing and continued plastic straining during deformation. A quantitative theory establishes the conditions for ductility as a function of alloy composition in very good agreement with experiments on many existing magnesium alloys, and the solute-enhanced cross-slip mechanism is confirmed by transmission electron microscopy observations in magnesium-yttrium. The mechanistic theory can quickly screen for alloy compositions favoring conditions for high ductility and may help in the development of high-formability magnesium alloys.
纯镁由于金字塔[公式:见文本]位错转变为不活动的结构,表现出较差的延展性,使得这种密度最低的结构金属在许多可以提高能源效率的应用中无法使用。我们展示了为什么镁可以通过特定的稀溶质添加变得具有延展性,这增加了[公式:见文本]的交滑移和增殖速率,使其比有害的[公式:见文本]转变快得多,从而在加工过程中形成有利的织构,并在变形过程中继续进行塑性应变。定量理论确立了延展性的条件,作为合金成分的函数,与许多现有镁合金的实验结果非常吻合,并且在镁-钇中的透射电子显微镜观察证实了溶质增强的交滑移机制。该力学理论可以快速筛选有利于高延展性的合金成分,可能有助于高成形性镁合金的开发。