Suppr超能文献

用于确定无膜细胞器的形态和功能的光遗传学重建

Optogenetic Reconstitution for Determining the Form and Function of Membraneless Organelles.

作者信息

Dine Elliot, Toettcher Jared E

机构信息

Department of Molecular Biology , Princeton University , Princeton , New Jersey 08544 , United States.

出版信息

Biochemistry. 2018 May 1;57(17):2432-2436. doi: 10.1021/acs.biochem.7b01173. Epub 2018 Jan 26.

Abstract

It has recently become clear that large-scale macromolecular self-assembly is a rule, rather than an exception, of intracellular organization. A growing number of proteins and RNAs have been shown to self-assemble into micrometer-scale clusters that exhibit either liquid-like or gel-like properties. Given their proposed roles in intracellular regulation, embryo development, and human disease, it is becoming increasingly important to understand how these membraneless organelles form and to map their functional consequences for the cell. Recently developed optogenetic systems make it possible to acutely control cluster assembly and disassembly in live cells, driving the separation of proteins of interest into liquid droplets, hydrogels, or solid aggregates. Here we propose that these approaches, as well as their evolution into the next generation of optogenetic biophysical tools, will allow biologists to determine how the self-assembly of membraneless organelles modulates diverse biochemical processes.

摘要

最近已经明确,大规模的大分子自组装是细胞内组织的一种规律,而非例外情况。越来越多的蛋白质和RNA已被证明能自组装成具有液体样或凝胶样性质的微米级聚集体。鉴于它们在细胞内调节、胚胎发育和人类疾病中所起的作用,了解这些无膜细胞器如何形成以及描绘它们对细胞的功能影响变得越来越重要。最近开发的光遗传学系统使得在活细胞中急性控制聚集体的组装和拆卸成为可能,促使感兴趣的蛋白质分离成液滴、水凝胶或固体聚集体。在此我们提出,这些方法以及它们向新一代光遗传学生物物理工具的发展,将使生物学家能够确定无膜细胞器的自组装如何调节各种生化过程。

相似文献

1
Optogenetic Reconstitution for Determining the Form and Function of Membraneless Organelles.
Biochemistry. 2018 May 1;57(17):2432-2436. doi: 10.1021/acs.biochem.7b01173. Epub 2018 Jan 26.
2
Functional Implications of Intracellular Phase Transitions.
Biochemistry. 2018 May 1;57(17):2415-2423. doi: 10.1021/acs.biochem.7b01136. Epub 2018 Jan 24.
3
Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118823. doi: 10.1016/j.bbamcr.2020.118823. Epub 2020 Aug 13.
4
Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles.
Biochemistry. 2018 May 1;57(17):2470-2477. doi: 10.1021/acs.biochem.8b00001. Epub 2018 Apr 3.
5
Life and Work of Stress Granules and Processing Bodies: New Insights into Their Formation and Function.
Biochemistry. 2018 May 1;57(17):2488-2498. doi: 10.1021/acs.biochem.8b00025. Epub 2018 Apr 10.
7
[Membraneless organelles and liquid-liquid phase separation – methods for their characterisation].
Postepy Biochem. 2020 Jun 27;66(2):111-124. doi: 10.18388/pb.2020_330.
9
A guide to regulation of the formation of biomolecular condensates.
FEBS J. 2020 May;287(10):1924-1935. doi: 10.1111/febs.15254. Epub 2020 Mar 14.
10
Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning.
Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6796-6799. doi: 10.1002/anie.201800140. Epub 2018 May 8.

引用本文的文献

1
Out of the Dark and Into the Light: A New View of Phytochrome Photobodies.
Front Plant Sci. 2021 Aug 31;12:732947. doi: 10.3389/fpls.2021.732947. eCollection 2021.
3
Protein assembly systems in natural and synthetic biology.
BMC Biol. 2020 Mar 26;18(1):35. doi: 10.1186/s12915-020-0751-4.
4
Harnessing biomolecular condensates in living cells.
J Biochem. 2019 Jul 1;166(1):13-27. doi: 10.1093/jb/mvz028.

本文引用的文献

1
Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions.
Nat Mater. 2018 Jan;17(1):79-89. doi: 10.1038/nmat5006. Epub 2017 Nov 6.
2
The Eukaryotic CO-Concentrating Organelle Is Liquid-like and Exhibits Dynamic Reorganization.
Cell. 2017 Sep 21;171(1):148-162.e19. doi: 10.1016/j.cell.2017.08.008.
3
Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin.
Nature. 2017 Jul 13;547(7662):236-240. doi: 10.1038/nature22822. Epub 2017 Jun 21.
4
Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets.
Cell. 2017 Jan 12;168(1-2):159-171.e14. doi: 10.1016/j.cell.2016.11.054. Epub 2016 Dec 29.
5
Engineering extrinsic disorder to control protein activity in living cells.
Science. 2016 Dec 16;354(6318):1441-1444. doi: 10.1126/science.aah3404.
7
Phase separation of signaling molecules promotes T cell receptor signal transduction.
Science. 2016 Apr 29;352(6285):595-9. doi: 10.1126/science.aad9964. Epub 2016 Apr 7.
8
Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins.
Mol Cell. 2015 Oct 15;60(2):208-19. doi: 10.1016/j.molcel.2015.08.018. Epub 2015 Sep 24.
9
A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation.
Cell. 2015 Aug 27;162(5):1066-77. doi: 10.1016/j.cell.2015.07.047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验