Suppr超能文献

阴离子与非极性口袋的配位热力学。

The Thermodynamics of Anion Complexation to Nonpolar Pockets.

机构信息

Department of Chemistry and ‡Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States.

出版信息

J Phys Chem B. 2018 Feb 8;122(5):1702-1713. doi: 10.1021/acs.jpcb.7b12259. Epub 2018 Jan 26.

Abstract

The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol. Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

摘要

非极性表面与可极化阴离子之间的相互作用位于疏水性和豪夫迈斯特效应之间的灰色区域。为了评估这些相互作用的亲和力,使用 NMR 和 ITC 来探测 8 种阴离子与 4 种不同主体的热力学结合,这些主体的口袋主要由碳氢化合物组成。研究了两类主体:穴醚和环糊精。对于所有主体,发现阴离子亲和力都遵循豪夫迈斯特序列,其缔合范围为 1.6-5.7 kcal/mol。尽管穴醚主体 1 和 2 具有固有负静电场,但确定这些更具包裹性的主体通常更强烈地结合阴离子。观察到四个主体各自具有特定的阴离子亲和力,这些亲和力不能轻易地用它们的结构来解释,这表明抗衡阳离子和“空”主体、游离客体以及主体-客体配合物的溶剂化在定义亲和力方面非常重要。

相似文献

1
The Thermodynamics of Anion Complexation to Nonpolar Pockets.
J Phys Chem B. 2018 Feb 8;122(5):1702-1713. doi: 10.1021/acs.jpcb.7b12259. Epub 2018 Jan 26.
2
Cavitands with introverted functionality stabilize tetrahedral intermediates.
J Am Chem Soc. 2007 Dec 19;129(50):15639-43. doi: 10.1021/ja0756366. Epub 2007 Nov 16.
3
Self-folding cavitands: structural characterization of the induced-fit model.
Chem Commun (Camb). 2010 Mar 14;46(10):1637-9. doi: 10.1039/b927031k. Epub 2010 Feb 5.
4
Extraction of hydrophobic species into a water-soluble synthetic receptor.
J Am Chem Soc. 2007 Nov 7;129(44):13464-73. doi: 10.1021/ja0727058. Epub 2007 Oct 10.
5
Binding of cyclic carboxylates to octa-acid deep-cavity cavitand.
J Comput Aided Mol Des. 2014 Apr;28(4):319-25. doi: 10.1007/s10822-013-9690-2. Epub 2013 Nov 12.
6
Simulation optimization of spherical non-polar guest recognition by deep-cavity cavitands.
J Chem Phys. 2013 Dec 21;139(23):234502. doi: 10.1063/1.4844215.
7
Fluorinated Tetraphosphonate Cavitands.
Molecules. 2018 Oct 17;23(10):2670. doi: 10.3390/molecules23102670.
8
Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer.
Soft Matter. 2014 Dec 28;10(48):9651-6. doi: 10.1039/c4sm02347a. Epub 2014 Nov 4.
9
Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution.
Nat Chem. 2020 Jul;12(7):589-594. doi: 10.1038/s41557-020-0458-8. Epub 2020 May 18.
10
Anion binding by a tetradipicolylamine-substituted resorcinarene cavitand.
Inorg Chem. 2005 Jun 13;44(12):4295-300. doi: 10.1021/ic048841k.

引用本文的文献

1
Anion-Facilitated Hydrogen-Deuterium Exchange as a Tool to Probe Weak Anion-Protein Interactions Responsible for Hofmeister Effects.
J Phys Chem B. 2025 Feb 27;129(8):2235-2245. doi: 10.1021/acs.jpcb.4c08619. Epub 2025 Feb 13.
3
Assessing Weak Anion Binding to Small Peptides.
J Phys Chem B. 2024 Apr 18;128(15):3605-3613. doi: 10.1021/acs.jpcb.4c00657. Epub 2024 Apr 9.
4
On the Nature of Guest Complexation in Water: Triggered Wetting-Water-Mediated Binding.
J Phys Chem B. 2022 Apr 28;126(16):3150-3160. doi: 10.1021/acs.jpcb.2c00628. Epub 2022 Apr 19.
5
6
Weakly hydrated anions bind to polymers but not monomers in aqueous solutions.
Nat Chem. 2022 Jan;14(1):40-45. doi: 10.1038/s41557-021-00805-z. Epub 2021 Nov 1.
8
A neutral porous organic polymer host for the recognition of anionic dyes in water.
Chem Sci. 2020 Jun 19;11(29):7716-7721. doi: 10.1039/d0sc02941f.
10
Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution.
Nat Chem. 2020 Jul;12(7):589-594. doi: 10.1038/s41557-020-0458-8. Epub 2020 May 18.

本文引用的文献

1
DNA's Chiral Spine of Hydration.
ACS Cent Sci. 2017 Jul 26;3(7):708-714. doi: 10.1021/acscentsci.7b00100. Epub 2017 May 24.
2
Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions.
J Phys Chem B. 2017 Mar 9;121(9):1997-2014. doi: 10.1021/acs.jpcb.6b10797. Epub 2017 Feb 8.
3
Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands.
J Comput Aided Mol Des. 2017 Jan;31(1):21-28. doi: 10.1007/s10822-016-9925-0. Epub 2016 Jul 18.
4
Supramolecular Recognition Induces Nonsynchronous Change of Dye Fluorescence Properties.
J Org Chem. 2016 Aug 5;81(15):6587-95. doi: 10.1021/acs.joc.6b01230. Epub 2016 Jul 21.
5
Water-Mediated Hydrophobic Interactions.
Annu Rev Phys Chem. 2016 May 27;67:617-38. doi: 10.1146/annurev-physchem-040215-112412.
6
Molecular Shape and the Hydrophobic Effect.
Annu Rev Phys Chem. 2016 May 27;67:307-29. doi: 10.1146/annurev-physchem-040215-112316.
7
Water-Mediated Ion Pairing: Occurrence and Relevance.
Chem Rev. 2016 Jul 13;116(13):7626-41. doi: 10.1021/acs.chemrev.5b00742. Epub 2016 May 6.
8
Binding Hydrated Anions with Hydrophobic Pockets.
J Am Chem Soc. 2016 Jan 13;138(1):48-51. doi: 10.1021/jacs.5b10937. Epub 2015 Dec 24.
9
A Simple Theory for the Hofmeister Series.
J Phys Chem Lett. 2013 Dec 19;4(24):4247-52. doi: 10.1021/jz402072g. Epub 2013 Dec 2.
10
Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to γ-Cyclodextrin.
Angew Chem Int Ed Engl. 2015 Jun 1;54(23):6852-6. doi: 10.1002/anie.201412485. Epub 2015 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验