Laurent Muriel, De Backer Jean-François, Rial Danie, Schiffmann Serge N, de Kerchove d'Exaerde Alban
Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
WELBIO, Liège, Belgium.
Front Behav Neurosci. 2017 Dec 22;11:256. doi: 10.3389/fnbeh.2017.00256. eCollection 2017.
The striatum is a key brain structure involved in the processing of cognitive flexibility, which results from the balance between the flexibility demanded for novel learning of motor actions and the inflexibility required to preserve previously learned actions. In particular, the dorsolateral portion of the striatum (DLS) is engaged in the learning of action sequence. This process is temporally driven by fine adjustments in the function of the two main neuronal populations of the striatum, known as the direct pathway medium spiny neurons (dMSNs) and indirect pathway medium spiny neurons (iMSNs). Here, using optogenetics, behavioral, and electrophysiological tools, we addressed the relative role of both neuronal populations in the acquisition of a reversal dual action sequence in the DLS. While the channelrhodopsin-induced activation of dMSNs and iMSNs of the DLS did not induce changes in the learning rate of the sequence, the specific activation of the dMSNs of the DLS facilitated the acquisition of a reversal dual action sequence; the activation of iMSNs induced a significant deficit in the acquisition of the same task. Taken together our results indicate an antagonistic relationship between dMSNs and iMSNs on the acquisition of a reversal dual action sequence.
纹状体是参与认知灵活性处理的关键脑结构,认知灵活性源于新运动动作学习所需的灵活性与保持先前学习动作所需的不灵活性之间的平衡。特别是,纹状体的背外侧部分(DLS)参与动作序列的学习。这一过程在时间上由纹状体中两个主要神经元群体功能的精细调节驱动,这两个群体分别是直接通路中型多棘神经元(dMSN)和间接通路中型多棘神经元(iMSN)。在此,我们使用光遗传学、行为学和电生理学工具,探讨了这两个神经元群体在DLS中获取反向双动作序列时的相对作用。虽然通道视紫红质诱导的DLS中dMSN和iMSN的激活并未引起序列学习速率的变化,但DLS中dMSN的特异性激活促进了反向双动作序列的获取;iMSN的激活在同一任务的获取中导致了显著缺陷。综合我们的结果表明,dMSN和iMSN在获取反向双动作序列方面存在拮抗关系。