Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, PT, Portugal.
Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
Nature. 2022 Jul;607(7919):521-526. doi: 10.1038/s41586-022-04894-9. Epub 2022 Jul 6.
The direct and indirect pathways of the basal ganglia are classically thought to promote and suppress action, respectively. However, the observed co-activation of striatal direct and indirect medium spiny neurons (dMSNs and iMSNs, respectively) has challenged this view. Here we study these circuits in mice performing an interval categorization task that requires a series of self-initiated and cued actions and, critically, a sustained period of dynamic action suppression. Although movement produced the co-activation of iMSNs and dMSNs in the sensorimotor, dorsolateral striatum (DLS), fibre photometry and photo-identified electrophysiological recordings revealed signatures of functional opponency between the two pathways during action suppression. Notably, optogenetic inhibition showed that DLS circuits were largely engaged to suppress-and not promote-action. Specifically, iMSNs on a given hemisphere were dynamically engaged to suppress tempting contralateral action. To understand how such regionally specific circuit function arose, we constructed a computational reinforcement learning model that reproduced key features of behaviour, neural activity and optogenetic inhibition. The model predicted that parallel striatal circuits outside the DLS learned the action-promoting functions, generating the temptation to act. Consistent with this, optogenetic inhibition experiments revealed that dMSNs in the associative, dorsomedial striatum, in contrast to those in the DLS, promote contralateral actions. These data highlight how opponent interactions between multiple circuit- and region-specific basal ganglia processes can lead to behavioural control, and establish a critical role for the sensorimotor indirect pathway in the proactive suppression of tempting actions.
基底神经节的直接和间接通路经典地被认为分别促进和抑制动作。然而,纹状体直接和间接中间神经元(分别为 dMSNs 和 iMSNs)的观察到的共同激活挑战了这一观点。在这里,我们在执行需要一系列自我发起和提示动作的间隔分类任务的小鼠中研究这些回路,关键是需要持续的动态动作抑制期。尽管运动产生了感觉运动、背外侧纹状体 (DLS) 中 iMSNs 和 dMSNs 的共同激活,但光纤光度法和光鉴定的电生理记录显示,在动作抑制期间,两条通路之间存在功能拮抗的特征。值得注意的是,光遗传学抑制表明 DLS 回路主要参与抑制而不是促进动作。具体来说,在给定的半球上,iMSNs 被动态地激活以抑制诱人的对侧动作。为了理解这种区域特异性回路功能是如何产生的,我们构建了一个计算强化学习模型,该模型再现了行为、神经活动和光遗传学抑制的关键特征。该模型预测,DLS 之外的平行纹状体回路学习了促进动作的功能,产生了行动的诱惑。与此一致,光遗传学抑制实验表明,与 DLS 中的 dMSNs 相反,与关联、背内侧纹状体中的 dMSNs 促进对侧动作。这些数据突出了多个回路和区域特异性基底神经节过程之间的对手相互作用如何导致行为控制,并确立了感觉运动间接通路在主动抑制诱人动作中的关键作用。