Suppr超能文献

使用3D打印的可溶模具制造真正的三维微流体通道。

Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold.

作者信息

Kang Kyunghun, Oh Sangwoo, Yi Hak, Han Seungoh, Hwang Yongha

机构信息

Department of ElectroMechanical Systems Engineering, Korea University, Sejong 30019, South Korea.

Maritime Safety Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon, South Korea.

出版信息

Biomicrofluidics. 2018 Jan 5;12(1):014105. doi: 10.1063/1.5012548. eCollection 2018 Jan.

Abstract

The field of complex microfluidic channels is rapidly expanding toward channels with variable cross-sections (i.e., beyond simple rounded channels with a constant diameter), as well as channels whose trajectory can be outside of a single plane. This paper introduces the use of three-dimensional (3D) printed soluble wax as cast molds for rapid fabrication of truly arbitrary microfluidic polydimethylsiloxane (PDMS) channels that are not achieved through typical soft lithography. The molds are printed directly from computer-aided design files, followed by simple dissolution using a solvent after molding PDMS, making rapid prototyping of microfluidic devices possible in hours. As part of the fabrication method, the solubility of several build materials in solvents and their effect on PDMS were investigated to remove the 3D-printed molds from inside the replicated PDMS microfluidic channels without damage. Technology limits, including surface roughness and resolution by comparing the designed channels with fabricated cylindrical channels with various diameters, are also characterized. We reproduced a 3D image of an actual human cerebral artery as cerebral artery-shaped PDMS channels with a diameter of 240 m to prove the developed fabrication technique. It was confirmed that the fabricated vascular channels were free from any leakage by observing the fluorescence fluid fill.

摘要

复杂微流控通道领域正迅速朝着具有可变横截面的通道(即超出具有恒定直径的简单圆形通道)以及其轨迹可以在单个平面之外的通道发展。本文介绍了使用三维(3D)打印的可溶性蜡作为铸模,用于快速制造通过典型软光刻无法实现的真正任意形状的微流控聚二甲基硅氧烷(PDMS)通道。这些模具直接从计算机辅助设计文件打印出来,在模制PDMS后使用溶剂进行简单溶解,从而使微流控设备能够在数小时内快速成型。作为制造方法的一部分,研究了几种构建材料在溶剂中的溶解度及其对PDMS的影响,以便在不损坏复制的PDMS微流控通道内部的情况下移除3D打印的模具。还通过将设计的通道与制造的具有各种直径的圆柱形通道进行比较,表征了包括表面粗糙度和分辨率在内的技术限制。我们将实际人类脑动脉的3D图像复制为直径240μm的脑动脉形状的PDMS通道,以证明所开发的制造技术。通过观察荧光液体填充,证实制造的血管通道没有任何泄漏。

相似文献

引用本文的文献

10
3D Printed Microfluidics.3D打印微流控技术
Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):45-65. doi: 10.1146/annurev-anchem-091619-102649. Epub 2019 Dec 10.

本文引用的文献

9
Applications of Microfluidics in Stem Cell Biology.微流控技术在干细胞生物学中的应用
Bionanoscience. 2012 Dec 1;2(4):277-286. doi: 10.1007/s12668-012-0051-8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验