Suppr超能文献

锂硫电池中的催化作用:促进硫转化并降低穿梭效应。

Catalytic Effects in Lithium-Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect.

作者信息

Liu Donghai, Zhang Chen, Zhou Guangmin, Lv Wei, Ling Guowei, Zhi Linjie, Yang Quan-Hong

机构信息

School of Chemical Engineering and Technology and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China.

School of Marine Science and Technology Tianjin University Tianjin 300072 China.

出版信息

Adv Sci (Weinh). 2017 Sep 5;5(1):1700270. doi: 10.1002/advs.201700270. eCollection 2018 Jan.

Abstract

Lithium-sulfur (Li-S) battery has emerged as one of the most promising next-generation energy-storage systems. However, the shuttle effect greatly reduces the battery cycle life and sulfur utilization, which is great deterrent to its practical use. This paper reviews the tremendous efforts that are made to find a remedy for this problem, mostly through physical or chemical confinement of the lithium polysulfides (LiPSs). Intrinsically, this "confinement" has a relatively limited effect on improving the battery performance because in most cases, the LiPSs are "passively" blocked and cannot be reused. Thus, this strategy becomes less effective with a high sulfur loading and ultralong cycling. A more "positive" method that not only traps but also increases the subsequent conversion of LiPSs back to lithium sulfides is urgently needed to fundamentally solve the shuttle effect. Here, recent advances on catalytic effects in increasing the rate of conversion of soluble long-chain LiPSs to insoluble short-chain LiS/LiS, and vice versa, are reviewed, and the roles of noble metals, metal oxides, metal sulfides, metal nitrides, and some metal-free materials in this process are highlighted. Challenges and potential solutions for the design of catalytic cathodes and interlayers in Li-S battery are discussed in detail.

摘要

锂硫(Li-S)电池已成为最具前景的下一代储能系统之一。然而,穿梭效应极大地降低了电池的循环寿命和硫利用率,这对其实际应用构成了巨大阻碍。本文综述了为解决这一问题所做出的巨大努力,主要是通过对多硫化锂(LiPSs)进行物理或化学限制。本质上,这种“限制”对改善电池性能的效果相对有限,因为在大多数情况下,LiPSs被“被动”阻断且无法再利用。因此,在高硫负载和超长循环的情况下,这种策略的效果会变差。迫切需要一种更“积极”的方法,不仅能捕获LiPSs,还能提高其随后转化回硫化锂的转化率,以从根本上解决穿梭效应。在此,综述了在提高可溶性长链LiPSs转化为不溶性短链Li₂S/Li₂S₂的速率以及反之亦然的过程中催化作用的最新进展,并强调了贵金属、金属氧化物、金属硫化物、金属氮化物和一些无金属材料在此过程中的作用。详细讨论了锂硫电池中催化阴极和中间层设计面临的挑战及潜在解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a51/5770674/347e4aa08f6e/ADVS-5-na-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验