Boldin Ivan A, Kraft Alexander, Wunderlich Christof
Department Physik, Naturwissenschäftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany.
Phys Rev Lett. 2018 Jan 12;120(2):023201. doi: 10.1103/PhysRevLett.120.023201.
Cold ions trapped in the vicinity of conductive surfaces experience heating of their oscillatory motion. Typically, the rate of this heating is orders of magnitude larger than expected from electric field fluctuations due to thermal motion of electrons in the conductors. This effect, known as anomalous heating, is not fully understood. One of the open questions is the heating rate's dependence on the ion-electrode separation. We present a direct measurement of this dependence in an ion trap of simple planar geometry. The heating rates are determined by taking images of a single ^{172}Yb^{+} ion's resonance fluorescence after a variable heating time and deducing the trapped ion's temperature from measuring its average oscillation amplitude. Assuming a power law for the heating rate versus ion-surface separation dependence, an exponent of -3.79±0.12 is measured.
被困在导电表面附近的冷离子,其振荡运动会发生加热。通常情况下,这种加热速率比导体中电子热运动引起的电场波动所预期的要大几个数量级。这种效应,即所谓的反常加热,目前尚未完全理解。一个悬而未决的问题是加热速率对离子与电极间距的依赖性。我们在一个简单平面几何结构的离子阱中对这种依赖性进行了直接测量。加热速率是通过在可变加热时间后拍摄单个(^{172}Yb^{+})离子的共振荧光图像,并从测量其平均振荡幅度来推断被困离子的温度而确定的。假设加热速率与离子 - 表面间距依赖性呈幂律关系,测得的指数为(-3.79 \pm 0.12)。