Xia Hanxue, Attygalle Athula B
Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA.
J Mass Spectrom. 2018 Apr;53(4):353-360. doi: 10.1002/jms.4066.
An ion-mobility mass spectrometry study showed that the preferred O-protonated form of p-aminobenzoic in the gas phase can be converted to the thermodynamically less favored N-protomer by in-source collision-induced ion activation during the ion transfer process from the atmospheric region to the first vacuum region if the humidity is high in the ion source. Upon the addition of water vapor to the nitrogen gas used to promote the solid analyte to the gas phase under helium-plasma ionization conditions, the intensity of the ion-mobility arrival-time peak for the N-protomer increased dramatically. Evidently, the ion-activation process in the first vacuum region is able to provide the energy required to surmount the barrier to isomerize the O-protomer to the more energetic N-protomer. The transfer of the proton attached to the carbonyl oxygen atom of the O-protomer to the amino group takes place by a water-bridge mechanism. Apparently, the postionization transformations that take place during the transmission of ions from the atmospheric-pressure ion source to the detector, via different physical compartments of low to high vacuum, play an eminent role in determining the population ratios eventually manifested at the detector.
一项离子淌度质谱研究表明,在离子从常压区域转移至第一真空区域的过程中,如果离子源湿度较高,那么在气相中对氨基苯甲酸的优势O-质子化形式可通过源内碰撞诱导离子活化转化为热力学上较不稳定的N-质子异构体。在氦等离子体电离条件下,向用于将固体分析物推进至气相的氮气中添加水蒸气后,N-质子异构体的离子淌度到达时间峰强度显著增加。显然,第一真空区域中的离子活化过程能够提供能量,以克服将O-质子异构体异构化为能量更高的N-质子异构体的势垒。与O-质子异构体羰基氧原子相连的质子通过水桥机制转移至氨基。显然,离子从大气压离子源传输至检测器的过程中,经由不同低真空到高真空物理区间时发生的后电离转变,在决定最终在检测器上呈现的丰度比方面起着重要作用。