Center for Mass Spectrometry, Department of Biomedical Engineering, Chemistry, and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
J Am Soc Mass Spectrom. 2017 Aug;28(8):1575-1586. doi: 10.1007/s13361-017-1640-0. Epub 2017 Apr 10.
The gas-phase-ion generation technique and specific ion-source settings of a mass spectrometer influence heavily the protonation processes of molecules and the abundance ratio of the generated protomers. Hitherto that has been attributed primarily to the nature of the solvent and the pH. By utilizing electrospray ionization and ion-mobility mass spectrometry (IM-MS), we demonstrate, even in the seemingly trivial case of protonated aniline, that the protomer ratio strongly depends on the source conditions. Under low in-source ion activation, nearly 100% of the N-protomer of aniline is produced, and it can be subsequently converted to the C-protomer by collisional activation effected by increasing the electrical potential difference between the entrance and exit orifices of the first vacuum region. This activation and transformation process takes place even before the ion is mass-selected and subjected to IM separation. Despite the apparent simplicity of the problem, the preferred protonation site of aniline in the gas phase-the amino group or the aromatic ring-has been a topic of controversy. Our results not only provide unambiguous evidence that ring- and nitrogen-protonated aniline can coexist and be interconverted in the gas phase, but also that the ratio of the protomers depends on the internal energy of the original ion. There are many dynamic ion-transformation and fragmentation processes that take place in the different physical compartments of a Synapt G2 HDMS instrument. Such processes can dramatically change the very identity even of small ions, and therefore should be taken into account when interpreting product-ion mass spectra. Graphical Abstract ᅟ.
气相离子生成技术和质谱仪的特定离子源设置对分子的质子化过程和生成的质子化异构体的丰度比有很大影响。迄今为止,这主要归因于溶剂的性质和 pH 值。通过利用电喷雾电离和离子迁移质谱(IM-MS),我们甚至在看似微不足道的苯胺质子化的情况下证明,质子化异构体的比例强烈依赖于源条件。在低源内离子活化下,几乎 100%的苯胺的 N-质子化异构体被生成,并且可以通过增加第一真空区入口和出口孔之间的电位差来通过碰撞活化将其转化为 C-质子化异构体。这个活化和转化过程甚至在离子被质量选择并进行 IM 分离之前就发生了。尽管问题表面上很简单,但苯胺在气相中的优先质子化位点——氨基或芳环——一直是一个争议的话题。我们的结果不仅提供了明确的证据,证明气相中环和氮质子化的苯胺可以共存并相互转化,而且质子化异构体的比例取决于原始离子的内部能量。在 Synapt G2 HDMS 仪器的不同物理隔室中会发生许多动态离子转化和碎裂过程。这些过程甚至可以极大地改变小离子的身份,因此在解释产物离子质谱时应考虑这些过程。图摘要 ᅟ。