Purusothaman Yuvasree, Alluri Nagamalleswara Rao, Chandrasekhar Arunkumar, Vivekananthan Venkateswaran, Kim Sang-Jae
Nanomaterials and System Lab, Department of Mechatronics Engineering, Jeju National University, Jeju, 63243, South Korea.
School of Applied Energy Systems, Major in Mechanical Engineering, Jeju National University, Jeju, 63243, South Korea.
Small. 2018 Mar;14(11):e1703044. doi: 10.1002/smll.201703044. Epub 2018 Jan 29.
A feasible, morphological influence on photoresponse behavior of ZnO microarchitectures such as microwire (MW), coral-like microstrip (CMS), fibril-like clustered microwire (F-MW) grown by one-step carrier gas/metal catalyst "free" vapor transport technique is reported. Among them, ZnO F-MW exhibits higher photocurrent (I ) response, i.e., I > I > I . The unique structural alignment of ZnO F-MW has enhanced the I from 14.2 to 186, 221, 290 µA upon various light intensities such as 0 to 6, 11, 17 mW cm at λ . Herein, the nature of the as-fabricated ZnO photodetector (PD) is also demonstrated modulated by tuning the inner crystals piezoelectric potential through the piezo-phototronic effect. The I response of PD decreases monotonically by introducing compressive strain along the length of the device, which is due to the synergistic effect between the induced piezoelectric polarization and photogenerated charge carriers across the metal-semiconductor interface. The current behavior observed at the two interfaces acting as the source (S) and drain (D) is carefully investigated by analyzing the Schottky barrier heights (Φ ). This work can pave the way for the development of geometrically modified strain induced performances of PD to promote next generation self-powered optoelectronic integrated devices and switches.
报道了一种通过一步载气/金属催化剂“无”气相传输技术生长的ZnO微结构,如微线(MW)、珊瑚状微带(CMS)、纤维状簇状微线(F-MW)对光响应行为的可行形态学影响。其中,ZnO F-MW表现出更高的光电流(I)响应,即I>F-MW>I>CMS>I>MW。ZnO F-MW独特的结构排列在λ处不同光强(如0至6、11、17 mW cm)下将I从14.2提高到186、221、290 μA。在此,还证明了通过压光电效应调节内部晶体压电势来调制所制备的ZnO光电探测器(PD)的性质。通过沿器件长度引入压缩应变,PD的I响应单调下降,这是由于诱导压电极化与跨金属-半导体界面的光生电荷载流子之间的协同效应。通过分析肖特基势垒高度(Φ),仔细研究了在作为源极(S)和漏极(D)的两个界面处观察到的电流行为。这项工作可为开发几何形状改性的应变诱导PD性能铺平道路,以促进下一代自供电光电子集成器件和开关的发展。