a College of Education , University of Massachusetts Amherst.
Multivariate Behav Res. 2018 Mar-Apr;53(2):247-266. doi: 10.1080/00273171.2017.1419851. Epub 2018 Jan 29.
This research concerns the estimation of polychoric correlations in the context of fitting structural equation models to observed ordinal variables by multistage estimation. The first main contribution of this research is to propose and evaluate a Monte Carlo estimator for the asymptotic covariance matrix (ACM) of the polychoric correlation estimates. In multistage estimation, the ACM plays a prominent role, as overall test statistics, derived fit indices, and parameter standard errors all depend on this quantity. The ACM, however, must itself be estimated. Established approaches to estimating the ACM use a sample-based version, which can yield poor estimates with small samples. A simulation study demonstrates that the proposed Monte Carlo estimator can be more efficient than its sample-based counterpart. This leads to better calibration for established test statistics, in particular with small samples. The second main contribution of this research is a further exploration of the consequences of violating the normality assumption for the underlying response variables. We show the consequences depend on the type of nonnormality, and the number and location of thresholds. The simulation study also demonstrates that overall test statistics have little power to detect the studied forms of nonnormality, regardless of the ACM estimator.
本研究关注的是在通过多阶段估计将结构方程模型拟合到观察到的有序变量的情况下,对多项式相关系数进行估计的问题。这项研究的第一个主要贡献是提出并评估了一种用于估计多项式相关系数估计值的渐近协方差矩阵(ACM)的蒙特卡罗估计器。在多阶段估计中,ACM 起着重要的作用,因为总体检验统计量、派生的拟合指标和参数标准误差都依赖于这个数量。然而,ACM 本身必须进行估计。现有的 ACM 估计方法使用基于样本的版本,而这种方法在小样本下可能会产生较差的估计值。一项模拟研究表明,所提出的蒙特卡罗估计器比基于样本的对应物更有效。这导致了更准确的既定检验统计量,特别是在小样本的情况下。这项研究的第二个主要贡献是进一步探讨了违反基础响应变量正态性假设的后果。我们表明,后果取决于非正态性的类型,以及阈值的数量和位置。模拟研究还表明,无论使用哪种 ACM 估计器,总体检验统计量都几乎没有能力检测所研究的非正态性形式。