Suppr超能文献

小样本中多水平结构方程模型的极大似然估计、加权最小二乘均值和方差估计法以及贝叶斯方法的比较:一项模拟研究

A Comparison of ML, WLSMV, and Bayesian Methods for Multilevel Structural Equation Models in Small Samples: A Simulation Study.

作者信息

Holtmann Jana, Koch Tobias, Lochner Katharina, Eid Michael

机构信息

a Department of Psychology , Freie Universität Berlin.

b Department of Psychology , RWTH Aachen.

出版信息

Multivariate Behav Res. 2016 Sep-Oct;51(5):661-680. doi: 10.1080/00273171.2016.1208074. Epub 2016 Sep 3.

Abstract

Multilevel structural equation models are increasingly applied in psychological research. With increasing model complexity, estimation becomes computationally demanding, and small sample sizes pose further challenges on estimation methods relying on asymptotic theory. Recent developments of Bayesian estimation techniques may help to overcome the shortcomings of classical estimation techniques. The use of potentially inaccurate prior information may, however, have detrimental effects, especially in small samples. The present Monte Carlo simulation study compares the statistical performance of classical estimation techniques with Bayesian estimation using different prior specifications for a two-level SEM with either continuous or ordinal indicators. Using two software programs (Mplus and Stan), differential effects of between- and within-level sample sizes on estimation accuracy were investigated. Moreover, it was tested to which extent inaccurate priors may have detrimental effects on parameter estimates in categorical indicator models. For continuous indicators, Bayesian estimation did not show performance advantages over ML. For categorical indicators, Bayesian estimation outperformed WLSMV solely in case of strongly informative accurate priors. Weakly informative inaccurate priors did not deteriorate performance of the Bayesian approach, while strong informative inaccurate priors led to severely biased estimates even with large sample sizes. With diffuse priors, Stan yielded better results than Mplus in terms of parameter estimates.

摘要

多层次结构方程模型在心理学研究中的应用越来越广泛。随着模型复杂性的增加,估计在计算上的要求也越来越高,而小样本量对依赖渐近理论的估计方法提出了进一步的挑战。贝叶斯估计技术的最新发展可能有助于克服经典估计技术的缺点。然而,使用可能不准确的先验信息可能会产生不利影响,尤其是在小样本中。本蒙特卡罗模拟研究比较了经典估计技术与贝叶斯估计在具有连续或有序指标的二级结构方程模型中使用不同先验规范时的统计性能。使用两个软件程序(Mplus和Stan),研究了层间和层内样本量对估计准确性的差异影响。此外,还测试了不准确的先验在多大程度上可能对分类指标模型中的参数估计产生不利影响。对于连续指标,贝叶斯估计在性能上并不优于极大似然估计。对于分类指标,只有在强信息准确先验的情况下,贝叶斯估计才优于加权最小二乘均值和方差估计法。弱信息不准确先验不会降低贝叶斯方法的性能,而强信息不准确先验即使在大样本量的情况下也会导致严重有偏的估计。使用弥散先验时,在参数估计方面,Stan比Mplus产生的结果更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验