Suppr超能文献

基于网络的共表达分析以探索转移性黑色素瘤的潜在诊断生物标志物。

Network-based co-expression analysis for exploring the potential diagnostic biomarkers of metastatic melanoma.

作者信息

Wang Li-Xin, Li Yang, Chen Guan-Zhi

机构信息

Department of Dermatology, The Affiliated Hospital of Qingdao University, Shandong, China.

Institute of Dermatology and Skin Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.

出版信息

PLoS One. 2018 Jan 29;13(1):e0190447. doi: 10.1371/journal.pone.0190447. eCollection 2018.

Abstract

Metastatic melanoma is an aggressive skin cancer and is one of the global malignancies with high mortality and morbidity. It is essential to identify and verify diagnostic biomarkers of early metastatic melanoma. Previous studies have systematically assessed protein biomarkers and mRNA-based expression characteristics. However, molecular markers for the early diagnosis of metastatic melanoma have not been identified. To explore potential regulatory targets, we have analyzed the gene microarray expression profiles of malignant melanoma samples by co-expression analysis based on the network approach. The differentially expressed genes (DEGs) were screened by the EdgeR package of R software. A weighted gene co-expression network analysis (WGCNA) was used for the identification of DEGs in the special gene modules and hub genes. Subsequently, a protein-protein interaction network was constructed to extract hub genes associated with gene modules. Finally, twenty-four important hub genes (RASGRP2, IKZF1, CXCR5, LTB, BLK, LINGO3, CCR6, P2RY10, RHOH, JUP, KRT14, PLA2G3, SPRR1A, KRT78, SFN, CLDN4, IL1RN, PKP3, CBLC, KRT16, TMEM79, KLK8, LYPD3 and LYPD5) were treated as valuable factors involved in the immune response and tumor cell development in tumorigenesis. In addition, a transcriptional regulatory network was constructed for these specific modules or hub genes, and a few core transcriptional regulators were found to be mostly associated with our hub genes, including GATA1, STAT1, SP1, and PSG1. In summary, our findings enhance our understanding of the biological process of malignant melanoma metastasis, enabling us to identify specific genes to use for diagnostic and prognostic markers and possibly for targeted therapy.

摘要

转移性黑色素瘤是一种侵袭性皮肤癌,是全球死亡率和发病率都很高的恶性肿瘤之一。识别和验证早期转移性黑色素瘤的诊断生物标志物至关重要。先前的研究已经系统地评估了蛋白质生物标志物和基于mRNA的表达特征。然而,尚未确定用于早期诊断转移性黑色素瘤的分子标志物。为了探索潜在的调控靶点,我们基于网络方法通过共表达分析对恶性黑色素瘤样本的基因微阵列表达谱进行了分析。使用R软件的EdgeR包筛选差异表达基因(DEG)。加权基因共表达网络分析(WGCNA)用于识别特殊基因模块和枢纽基因中的DEG。随后,构建蛋白质-蛋白质相互作用网络以提取与基因模块相关的枢纽基因。最后,二十四个重要的枢纽基因(RASGRP2、IKZF1、CXCR5、LTB、BLK、LINGO3、CCR6、P2RY10、RHOH、JUP、KRT14、PLA2G3、SPRR1A、KRT78、SFN、CLDN4、IL1RN、PKP3、CBLC、KRT16、TMEM79、KLK8、LYPD3和LYPD5)被视为参与肿瘤发生过程中免疫反应和肿瘤细胞发育的重要因素。此外,针对这些特定模块或枢纽基因构建了转录调控网络,并发现一些核心转录调节因子大多与我们的枢纽基因相关,包括GATA1、STAT1、SP1和PSG1。总之,我们的研究结果加深了我们对恶性黑色素瘤转移生物学过程的理解,使我们能够识别用于诊断和预后标志物以及可能用于靶向治疗的特定基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/933f/5788335/c54b4065bae9/pone.0190447.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验