Suppr超能文献

结构明胶水凝胶的刚度和降解之间的相互作用导致体外和体内软骨生成的差异调节。

Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo.

机构信息

Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany; BIOSS, Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.

Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany.

出版信息

Acta Biomater. 2018 Mar 15;69:83-94. doi: 10.1016/j.actbio.2018.01.025. Epub 2018 Jan 31.

Abstract

UNLABELLED

The limited capacity of cartilage to heal large lesions through endogenous mechanisms has led to extensive effort to develop materials to facilitate chondrogenesis. Although physical-chemical properties of biomaterials have been shown to impact in vitro chondrogenesis, whether these findings are translatable in vivo is subject of debate. Herein, architectured 3D hydrogel scaffolds (ArcGel) (produced by crosslinking gelatin with ethyl lysine diisocyanate (LDI)) were used as a model system to investigate the interplay between scaffold mechanical properties and degradation on matrix deposition by human articular chondrocytes (HAC) from healthy donors in vitro and in vivo. Using ArcGel scaffolds of different tensile and shear modulus, and degradation behavior; in this study, we compared the fate of ex vivo engineered ArcGels-chondrocytes constructs, i.e. the traditional tissue engineering approach, with thede novoformation of cartilaginous tissue in HAC laden ArcGels in an ectopic nude mouse model. While the softer and fast degrading ArcGel (LNCO3) was more efficient at promoting chondrogenic differentiation in vitro, upon ectopic implantation, the stiffer and slow degrading ArcGel (LNCO8) was superior in maintaining chondrogenic phenotype in HAC and retention of cartilaginous matrix. Furthermore, surprisingly the de novo formation of cartilage tissue was promoted only in LNCO8. Since HAC cultured for only three days in the LNCO8 environment showed upregulation of hypoxia-associated genes, this suggests a potential role for hypoxia in the observed in vivo outcomes. In summary, this study sheds light on how immediate environment (in vivo versus in vitro) can significantly impact the outcomes of cell-laden biomaterials.

STATEMENT OF SIGNIFICANCE

In this study, 3D architectured hydrogels (ArcGels) with different mechanical and biodegradation properties were investigated for their potential to promote formation of cartilaginous matrix by human articular chondrocytes in vitro and in vivo. Two paradigms were explored (i) ex vivo engineering followed by in vivo implantation in ectopic site of nude mice and (ii) short in vitro culture (3 days) followed by implantation to induce de novo cartilage formation. Softer and fast degrading ArcGel were better at promoting chondrogenesis in vitro, while stiffer and slow degrading ArcGel were strikingly superior in both maintaining chondrogenesis in vivo and inducing de novo formation of cartilage. Our findings highlight the importance of the interplay between scaffold mechanics and degradation in chondrogenesis.

摘要

未加说明

由于软骨自身的修复能力有限,通过内源性机制来修复较大的损伤的能力有限,这导致人们广泛致力于开发促进软骨生成的材料。尽管生物材料的物理化学性质已被证明会影响体外软骨生成,但这些发现是否能在体内转化仍存在争议。在此,我们构建了 3D 水凝胶支架(ArcGel)(通过交联明胶和乙基赖氨酸二异氰酸酯(LDI)制成)作为模型系统,以研究支架力学性能与降解之间的相互作用对来自健康供体的人关节软骨细胞(HAC)在体外和体内基质沉积的影响。使用不同拉伸和剪切模量以及降解行为的 ArcGel 支架;在这项研究中,我们比较了体外工程化的 ArcGels-软骨细胞构建体(即传统的组织工程方法)与 HAC 负载的 ArcGels 在异位裸鼠模型中形成新的软骨组织的命运。虽然较软且快速降解的 ArcGel(LNCO3)在体外更有效地促进软骨分化,但在异位植入时,较硬且缓慢降解的 ArcGel(LNCO8)在维持 HAC 的软骨表型和保留软骨基质方面更具优势。此外,令人惊讶的是,仅在 LNCO8 中促进了新的软骨组织形成。由于 HAC 在 LNCO8 环境中培养仅 3 天就表现出与缺氧相关基因的上调,这表明缺氧可能在观察到的体内结果中起作用。总之,本研究阐明了即时环境(体内与体外)如何显著影响细胞负载生物材料的结果。

意义声明

在这项研究中,研究了具有不同机械和生物降解特性的 3D 结构水凝胶(ArcGels),以研究其通过人关节软骨细胞在体外和体内形成软骨基质的潜力。探索了两种范式(i)体外工程化,然后在裸鼠异位植入,(ii)短期体外培养(3 天),然后植入以诱导新的软骨形成。较软且快速降解的 ArcGel 在体外更有利于促进软骨生成,而较硬且缓慢降解的 ArcGel 在体内维持软骨生成和诱导新的软骨形成方面表现出色。我们的研究结果强调了支架力学与软骨生成中降解之间相互作用的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验