Suppr超能文献

APX001 对中性粒细胞减少性播散性念珠菌病小鼠模型中念珠菌属的药代动力学和药效学研究。

Pharmacokinetics and Pharmacodynamics of APX001 against Candida spp. in a Neutropenic Disseminated Candidiasis Mouse Model.

机构信息

Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

Institute for Clinical Pharmacodynamics, Schenectady, New York, USA.

出版信息

Antimicrob Agents Chemother. 2018 Mar 27;62(4). doi: 10.1128/AAC.02542-17. Print 2018 Apr.

Abstract

APX001 is the prodrug of APX001A, which is a first-in-class small molecule with a unique mechanism of action that inhibits the fungal enzyme Gwt1 in the glycosylphosphatidylinositol (GPI) biosynthesis pathway. The goal of the present study was to determine which pharmacokinetic/pharmacodynamic (PK/PD) index and magnitude best correlated with efficacy in the murine disseminated candidiasis model for ( = 5), ( = 5), and ( = 4). MIC values ranged from 0.002 to 0.03 mg/liter for , from 0.008 to 0.06 mg/liter for , and from 0.004 to 0.03 mg/liter for Plasma APX001A pharmacokinetic measurements were performed in mice after oral administration of 4, 16, 64, and 256 mg/kg of body weight APX001. Single-dose pharmacokinetic studies exhibited maximum plasma concentration () values of 0.46 to 15.6 mg/liter, area under the concentration-time curve (AUC) from time zero to infinity (AUC) values of 0.87 to 70.0 mg · h/liter, and half-lives of 1.40 to 2.75 h. A neutropenic murine disseminated candidiasis model was utilized for all treatment studies, and drug dosing was by the oral route. Dose fractionation was performed against K1, with total doses ranging from 4 to 1,024 mg/kg/day of APX001 fractionated into regimens of dosing every 3, 6, 8, and 12 h for a 24-h treatment duration. Nonlinear regression analysis was used to determine which PK/PD index best correlated with efficacy on the basis of the reduction in the number of CFU/kidney at 24 h. The 24-h free-drug AUC/MIC ratio (AUC/MIC) was the PK/PD index that best correlated with efficacy (coefficient of determination [] = 0.88). Treatment studies with the remaining strains utilized regimens of 1 to 256 mg/kg of APX001 administered every 6 h for a 24-h duration with and a 96-h study duration with and The dose required to achieve 50% of the maximum effect (ED) and stasis AUC/MIC targets were as follows: for , 3.67 ± 3.19 and 20.60 ± 6.50, respectively; for , 0.38 ± 0.21 and 1.31 ± 0.27, respectively; and for , 7.14 ± 4.54 and 14.67 ± 8.30, respectively. The present studies demonstrated and APX001A and APX001 potency, respectively, against , , and These results have potential relevance for clinical dose selection and evaluation of susceptibility breakpoints. The identification of a lower AUC/MIC ratio target for suggests that species-specific susceptibility breakpoints should be explored.

摘要

APX001 是 APX001A 的前药,APX001A 是一种具有独特作用机制的首创小分子,可抑制真菌酶 Gwt1 在糖基磷脂酰肌醇 (GPI) 生物合成途径中的活性。本研究的目的是确定哪种药代动力学/药效学 (PK/PD) 指数和幅度与在用于 ( = 5)、 ( = 5) 和 ( = 4) 的小鼠播散性念珠菌病模型中的疗效相关性最好。MIC 值范围为 0.002 至 0.03 毫克/升用于 ,0.008 至 0.06 毫克/升用于 ,0.004 至 0.03 毫克/升用于 。在小鼠口服给予 4、16、64 和 256 毫克/千克体重的 APX001 后,进行了 APX001A 的血浆药代动力学测量。单次剂量药代动力学研究显示,最大血浆浓度 () 值为 0.46 至 15.6 毫克/升,从时间 0 到无穷大的浓度-时间曲线下面积 (AUC) 值为 0.87 至 70.0 毫克·h/升,半衰期为 1.40 至 2.75 小时。所有治疗研究均使用中性粒细胞减少症小鼠播散性念珠菌病模型进行,药物给药途径为口服。针对 K1 进行了剂量分割,APX001 的总剂量范围为 4 至 1024 毫克/千克/天,分为每 3、6、8 和 12 小时一次的方案,持续 24 小时治疗。采用非线性回归分析确定哪种 PK/PD 指数与基于 24 小时时肾脏 CFU/数量减少的疗效相关性最好。24 小时游离药物 AUC/MIC 比值 (AUC/MIC) 是与疗效相关性最好的 PK/PD 指数 (决定系数 [] = 0.88)。对其余菌株的治疗研究采用了 1 至 256 毫克/千克的 APX001 方案,每 6 小时给药一次,持续 24 小时,用 进行研究,用 进行 96 小时的研究。达到最大效应 50% (ED) 和静止 AUC/MIC 目标所需的剂量如下:对于 ,3.67 ± 3.19 和 20.60 ± 6.50;对于 ,0.38 ± 0.21 和 1.31 ± 0.27;对于 ,7.14 ± 4.54 和 14.67 ± 8.30。本研究表明 分别具有 和 APX001A 和 APX001 的效力,分别针对 、 和 。这些结果对于临床剂量选择和评估敏感性断点具有潜在相关性。对于 ,确定较低的 AUC/MIC 比值目标表明应该探索物种特异性敏感性断点。

相似文献

1
Pharmacokinetics and Pharmacodynamics of APX001 against Candida spp. in a Neutropenic Disseminated Candidiasis Mouse Model.
Antimicrob Agents Chemother. 2018 Mar 27;62(4). doi: 10.1128/AAC.02542-17. Print 2018 Apr.
2
Isavuconazole pharmacodynamic target determination for Candida species in an in vivo murine disseminated candidiasis model.
Antimicrob Agents Chemother. 2013 Nov;57(11):5642-8. doi: 10.1128/AAC.01354-13. Epub 2013 Sep 3.
3
5
APX001 Pharmacokinetic/Pharmacodynamic Target Determination against in an Model of Invasive Pulmonary Aspergillosis.
Antimicrob Agents Chemother. 2019 Mar 27;63(4). doi: 10.1128/AAC.02372-18. Print 2019 Apr.
6
and Evaluation of the Antifungal Activity of APX001A/APX001 against Candida auris.
Antimicrob Agents Chemother. 2018 Feb 23;62(3). doi: 10.1128/AAC.02319-17. Print 2018 Mar.
8
In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model.
Antimicrob Agents Chemother. 2008 Feb;52(2):539-50. doi: 10.1128/AAC.01061-07. Epub 2007 Dec 10.
9
In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model.
Antimicrob Agents Chemother. 2008 Oct;52(10):3497-503. doi: 10.1128/AAC.00478-08. Epub 2008 Jul 14.
10
Pharmacodynamic Evaluation of Rezafungin (CD101) against Candida auris in the Neutropenic Mouse Invasive Candidiasis Model.
Antimicrob Agents Chemother. 2018 Oct 24;62(11). doi: 10.1128/AAC.01572-18. Print 2018 Nov.

引用本文的文献

2
Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease.
Clin Microbiol Rev. 2024 Jun 13;37(2):e0007423. doi: 10.1128/cmr.00074-23. Epub 2024 Apr 11.
3
Antifungal resistance, combinations and pipeline: oh my!
Drugs Context. 2023 Nov 9;12. doi: 10.7573/dic.2023-7-1. eCollection 2023.
4
Treatment of Invasive Aspergillosis: How It's Going, Where It's Heading.
Mycopathologia. 2023 Oct;188(5):667-681. doi: 10.1007/s11046-023-00727-z. Epub 2023 Apr 26.
5
Analysis of Candida Antifungal Resistance Using Animal Infection Models.
Methods Mol Biol. 2023;2658:225-238. doi: 10.1007/978-1-0716-3155-3_16.
6
Clinical Efficacy and Safety of a Novel Antifungal, Fosmanogepix, in Patients with Candidemia Caused by Candida auris Results from a Phase 2 Trial.
Antimicrob Agents Chemother. 2023 May 17;67(5):e0141922. doi: 10.1128/aac.01419-22. Epub 2023 Apr 6.
7
Safety and Pharmacokinetics of Intravenous and Oral Fosmanogepix, a First-in-Class Antifungal Agent, in Healthy Volunteers.
Antimicrob Agents Chemother. 2023 Apr 18;67(4):e0162322. doi: 10.1128/aac.01623-22. Epub 2023 Mar 29.
8
Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician.
Infect Drug Resist. 2023 Feb 22;16:1087-1097. doi: 10.2147/IDR.S375625. eCollection 2023.
9
Small molecules for combating multidrug-resistant superbug infections.
Acta Pharm Sin B. 2022 Nov;12(11):4056-4074. doi: 10.1016/j.apsb.2022.08.001. Epub 2022 Aug 12.
10
Recent Antifungal Pipeline Developments against : A Systematic Review.
J Fungi (Basel). 2022 Oct 28;8(11):1144. doi: 10.3390/jof8111144.

本文引用的文献

1
Drugs in Clinical Development for Fungal Infections.
Drugs. 2017 Sep;77(14):1505-1518. doi: 10.1007/s40265-017-0805-2.
2
Emergence of Candida auris: An International Call to Arms.
Clin Infect Dis. 2017 Jan 15;64(2):141-143. doi: 10.1093/cid/ciw696. Epub 2016 Oct 20.
3
Multidrug-resistant Candida auris: 'new kid on the block' in hospital-associated infections?
J Hosp Infect. 2016 Nov;94(3):209-212. doi: 10.1016/j.jhin.2016.08.004. Epub 2016 Aug 15.
4
The anti-Aspergillus drug pipeline: Is the glass half full or empty?
Med Mycol. 2017 Jan 1;55(1):118-124. doi: 10.1093/mmy/myw060. Epub 2016 Aug 25.
5
Candidemia and invasive candidiasis in adults: A narrative review.
Eur J Intern Med. 2016 Oct;34:21-28. doi: 10.1016/j.ejim.2016.06.029. Epub 2016 Jul 7.
6
Invasive Candidiasis.
N Engl J Med. 2015 Oct 8;373(15):1445-56. doi: 10.1056/NEJMra1315399.
7
The top three areas of basic research on Aspergillus fumigatus in 2011.
Ann N Y Acad Sci. 2012 Dec;1273:74-7. doi: 10.1111/j.1749-6632.2012.06798.x.
10
In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds.
Antimicrob Agents Chemother. 2011 Oct;55(10):4652-8. doi: 10.1128/AAC.00291-11. Epub 2011 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验