Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093, Warszawa, Poland.
QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125, Firenze, Italy.
Sci Rep. 2018 Jan 29;8(1):1777. doi: 10.1038/s41598-018-20034-8.
Entanglement between two separate systems is a necessary resource to violate a Bell inequality in a test of local realism. We demonstrate that to overcome the Bell bound, this correlation must be accompanied by the entanglement between the constituent particles. This happens whenever a super-selection rule prohibits coherences between states with different total number of particles and thus imposes a constraint on feasible local operations in each sub-system. We show that the necessary entanglement between the particles might solely result from their indistinguishability. We also give an example of both mode and particle-entangled pure state, which does not violate any Bell inequality. Our result reveals a fundamental relation between the non-locality and the particle entanglement.
两个独立系统之间的纠缠是违反局部实在性检验中贝尔不等式的必要资源。我们证明,为了克服贝尔界限,这种相关性必须伴随着组成粒子之间的纠缠。当超选择规则禁止具有不同总粒子数的状态之间的相干性,从而对每个子系统中的可行局部操作施加约束时,就会发生这种情况。我们表明,粒子之间必要的纠缠可能仅仅是由于它们的不可区分性而产生的。我们还给出了一个模和粒子纠缠的纯态的例子,它不违反任何贝尔不等式。我们的结果揭示了非局部性和粒子纠缠之间的基本关系。