Sala Leo, Szymańska Iwona B, Dablemont Céline, Lafosse Anne, Amiaud Lionel
Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay, F-91405 Orsay, France.
Department of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
Beilstein J Nanotechnol. 2018 Jan 5;9:57-65. doi: 10.3762/bjnano.9.8. eCollection 2018.
Focused electron beam induced deposition (FEBID) allows for the deposition of free standing material within nanometre sizes. The improvement of the technique needs a combination of new precursors and optimized irradiation strategies to achieve a controlled fragmentation of the precursor for leaving deposited material of desired composition. Here a new class of copper precursors is studied following an approach that probes some surface processes involved in the fragmentation of precursors. We use complexes of copper(II) with amines and perfluorinated carboxylate ligands that are solid and stable under ambient conditions. They are directly deposited on the surface for studying the fragmentation with surface science tools. Infrared spectroscopy and high-resolution electron energy loss spectroscopy (HREELS) are combined to show that the precursor is able to spontaneously lose amine ligands under vacuum. This loss can be enhanced by mild heating. The combination of mass spectrometry and low-energy electron irradiation (0-15 eV) shows that full amine ligands can be released upon irradiation, and that fragmentation of the perfluorinated ligands is induced by electrons of energy as low as 1.5 eV. Finally, the cross section for this process is estimated from the temporal evolution in the experiments on electron-stimulated desorption (ESD). The release of full ligands under high vacuum and by electron irradiation, and the cross section measured here for ligands fragmentation allow one to envisage the use of the two precursors for FEBID studies.
聚焦电子束诱导沉积(FEBID)能够在纳米尺寸范围内沉积独立的材料。该技术的改进需要新的前驱体与优化的辐照策略相结合,以实现前驱体的可控碎片化,从而留下具有所需组成的沉积材料。本文采用一种探究前驱体碎片化过程中一些表面过程的方法,对一类新型铜前驱体进行了研究。我们使用了铜(II)与胺和全氟羧酸配体形成的配合物,这些配合物在环境条件下为固体且稳定。它们被直接沉积在表面,以便用表面科学工具研究碎片化过程。红外光谱和高分辨率电子能量损失谱(HREELS)相结合,表明前驱体在真空下能够自发失去胺配体。通过温和加热可以增强这种损失。质谱与低能电子辐照(0 - 15 eV)相结合表明,辐照时可以释放完整的胺配体,并且能量低至1.5 eV的电子就能诱导全氟配体的碎片化。最后,根据电子激发脱附(ESD)实验中的时间演化来估计该过程的截面。在高真空下以及通过电子辐照释放完整配体,以及此处测量的配体碎片化截面,使得人们能够设想将这两种前驱体用于FEBID研究。