Suppr超能文献

用于频谱制图的压缩多光谱频谱感知

Compressive Multispectral Spectrum Sensing for Spectrum Cartography.

作者信息

Marín Alfonso Jeison, Martínez Torre Jose Ignacio, Arguello Fuentes Henry, Agudelo Leonardo Betancur

机构信息

GIDATI Research Group, Universidad Pontificia Bolivariana, 050031 Medellín, Colombia.

GHDwSw Research Group, ETSII, Campus Energía Inteligente, Universidad Rey Juan Carlos, 28933 Madrid, España.

出版信息

Sensors (Basel). 2018 Jan 29;18(2):387. doi: 10.3390/s18020387.

Abstract

In the process of spectrum sensing applied to wireless communications, it is possible to build interference maps based on acquired power spectral values. This allows the characterization of spectral occupation, which is crucial to take management spectrum decisions. However, the amount of information both in the space and frequency domains that needs to be processed generates an enormous amount of data with high transmission delays and high memory requirements. Meanwhile, compressive sensing is a technique that allows the reconstruction of sparse or compressible signals using fewer samples than those required by the Nyquist criterion. This paper presents a new model that uses compressed multispectral sampling for spectrum sensing. The aim is to reduce the number of data required for the storage and the subsequent construction of power spectral maps with geo-referenced information in different frequency bands. This model is based on architectures that use compressive sensing to analyze multispectral images. The operation of a centralized manager is presented in order to select the power data of different sensors by binary patterns. These sensors are located in different geographical positions. The centralized manager reconstructs a data cube with the transmitted power and frequency of operation of all the sensors based on the samples taken and applying multispectral sensing techniques. The results show that this multispectral data cube can be built with 50% of the samples generated by the devices, and the spectrum cartography information can be stored using only 6.25% of the original data.

摘要

在应用于无线通信的频谱感知过程中,基于获取的功率谱值构建干扰图是可行的。这使得能够对频谱占用情况进行表征,而这对于做出频谱管理决策至关重要。然而,在空间和频域中需要处理的信息量会产生大量具有高传输延迟和高内存需求的数据。同时,压缩感知是一种能够使用比奈奎斯特准则所需样本更少的样本重建稀疏或可压缩信号的技术。本文提出了一种用于频谱感知的使用压缩多光谱采样的新模型。其目的是减少存储所需的数据量以及后续构建具有不同频带地理参考信息的功率谱图所需的数据量。该模型基于使用压缩感知来分析多光谱图像的架构。提出了一个集中管理器的操作,以便通过二进制模式选择不同传感器的功率数据。这些传感器位于不同的地理位置。集中管理器根据所采集的样本并应用多光谱传感技术,重建一个包含所有传感器发射功率和工作频率的数据立方体。结果表明,该多光谱数据立方体可以用设备生成的50%的样本构建,并且频谱制图信息仅使用原始数据的6.25%即可存储。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51d/5855897/998e95fe3cb4/sensors-18-00387-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验