Suppr超能文献

一种用于生物医学数据非均匀自适应采样的神经算法。

A neural algorithm for the non-uniform and adaptive sampling of biomedical data.

作者信息

Mesin Luca

机构信息

Mathematical Biology and Physiology, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Turin, Italy.

出版信息

Comput Biol Med. 2016 Apr 1;71:223-30. doi: 10.1016/j.compbiomed.2016.02.004. Epub 2016 Feb 12.

Abstract

BACKGROUND AND OBJECTIVE

Body sensors are finding increasing applications in the self-monitoring for health-care and in the remote surveillance of sensitive people. The physiological data to be sampled can be non-stationary, with bursts of high amplitude and frequency content providing most information. Such data could be sampled efficiently with a non-uniform schedule that increases the sampling rate only during activity bursts.

METHODS

A real time and adaptive algorithm is proposed to select the sampling rate, in order to reduce the number of measured samples, but still recording the main information. The algorithm is based on a neural network which predicts the subsequent samples and their uncertainties, requiring a measurement only when the risk of the prediction is larger than a selectable threshold.

RESULTS

Four examples of application to biomedical data are discussed: electromyogram, electrocardiogram, electroencephalogram, and body acceleration. Sampling rates are reduced under the Nyquist limit, still preserving an accurate representation of the data and of their power spectral densities (PSD). For example, sampling at 60% of the Nyquist frequency, the percentage average rectified errors in estimating the signals are on the order of 10% and the PSD is fairly represented, until the highest frequencies. The method outperforms both uniform sampling and compressive sensing applied to the same data.

CONCLUSION

The discussed method allows to go beyond Nyquist limit, still preserving the information content of non-stationary biomedical signals. It could find applications in body sensor networks to lower the number of wireless communications (saving sensor power) and to reduce the occupation of memory.

摘要

背景与目的

人体传感器在医疗保健的自我监测以及对敏感人群的远程监测中得到了越来越广泛的应用。待采样的生理数据可能是非平稳的,高幅度和高频率成分的突发情况提供了大部分信息。可以采用非均匀采样方案对这类数据进行高效采样,该方案仅在活动突发期间提高采样率。

方法

提出了一种实时自适应算法来选择采样率,以减少测量样本的数量,但仍能记录主要信息。该算法基于一个神经网络,该网络预测后续样本及其不确定性,仅在预测风险大于可选择阈值时才需要进行测量。

结果

讨论了该算法在生物医学数据中的四个应用实例:肌电图、心电图、脑电图和身体加速度。采样率降低到奈奎斯特极限以下,仍能准确表示数据及其功率谱密度(PSD)。例如,在奈奎斯特频率的60%进行采样时,估计信号的平均整流误差百分比约为10%,并且PSD得到了相当准确的表示,直至最高频率。该方法优于对相同数据应用的均匀采样和压缩感知。

结论

所讨论的方法能够突破奈奎斯特极限,同时保留非平稳生物医学信号的信息内容。它可应用于人体传感器网络,以减少无线通信次数(节省传感器电量)并减少内存占用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验