Suppr超能文献

模拟家畜种群结构:安大略省养猪场的地理空间数据库。

Modeling livestock population structure: a geospatial database for Ontario swine farms.

作者信息

Khan Salah Uddin, O'Sullivan Terri L, Poljak Zvonimir, Alsop Janet, Greer Amy L

机构信息

Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.

Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada.

出版信息

BMC Vet Res. 2018 Jan 30;14(1):31. doi: 10.1186/s12917-018-1362-y.

Abstract

BACKGROUND

Infectious diseases in farmed animals have economic, social, and health consequences. Foreign animal diseases (FAD) of swine are of significant concern. Mathematical and simulation models are often used to simulate FAD outbreaks and best practices for control. However, simulation outcomes are sensitive to the population structure used. Within Canada, access to individual swine farm population data with which to parameterize models is a challenge because of privacy concerns. Our objective was to develop a methodology to model the farmed swine population in Ontario, Canada that could represent the existing population structure and improve the efficacy of simulation models.

RESULTS

We developed a swine population model based on the factors such as facilities supporting farm infrastructure, land availability, zoning and local regulations, and natural geographic barriers that could affect swine farming in Ontario. Assigned farm locations were equal to the swine farm density described in the 2011 Canadian Census of Agriculture. Farms were then randomly assigned to farm types proportional to the existing swine herd types. We compared the swine population models with a known database of swine farm locations in Ontario and found that the modeled population was representative of farm locations with a high accuracy (AUC: 0.91, Standard deviation: 0.02) suggesting that our algorithm generated a reasonable approximation of farm locations in Ontario.

CONCLUSION

In the absence of a readily accessible dataset providing details of the relative locations of swine farms in Ontario, development of a model livestock population that captures key characteristics of the true population structure while protecting privacy concerns is an important methodological advancement. This methodology will be useful for individuals interested in modeling the spread of pathogens between farms across a landscape and using these models to evaluate disease control strategies.

摘要

背景

养殖动物的传染病会产生经济、社会和健康影响。猪的外来动物疾病备受关注。数学模型和模拟模型常被用于模拟外来动物疾病的爆发及最佳防控措施。然而,模拟结果对所使用的种群结构很敏感。在加拿大,由于隐私问题,获取用于参数化模型的个体养猪场种群数据具有挑战性。我们的目标是开发一种方法,用于对加拿大安大略省的养殖猪种群进行建模,该方法能够代表现有的种群结构并提高模拟模型的效能。

结果

我们基于诸如支持农场基础设施的设施、土地可用性、分区和地方法规以及可能影响安大略省养猪业的自然地理屏障等因素,开发了一个猪种群模型。指定的农场位置与2011年加拿大农业普查中描述的养猪场密度相等。然后,根据现有猪群类型的比例,将农场随机分配到不同的农场类型。我们将猪种群模型与安大略省已知的养猪场位置数据库进行了比较,发现建模的种群能高度准确地代表农场位置(曲线下面积:0.91,标准差:0.02),这表明我们的算法生成了安大略省农场位置的合理近似值。

结论

在缺乏一个能提供安大略省养猪场相对位置详细信息的易于获取的数据集的情况下,开发一个既能捕捉真实种群结构的关键特征又能保护隐私的模型家畜种群是一项重要的方法学进展。这种方法对于那些有兴趣模拟病原体在景观中各农场间传播情况并利用这些模型评估疾病控制策略的人将很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca4b/5791355/b70fdd2786dc/12917_2018_1362_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验