Van Den Driessche George, Fourches Denis
Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
J Cheminform. 2018 Jan 30;10(1):3. doi: 10.1186/s13321-018-0257-z.
Idiosyncratic adverse drug reactions have been linked to a drug's ability to bind with a human leukocyte antigen (HLA) protein. However, due to the thousands of HLA variants and limited structural data for drug-HLA complexes, predicting a specific drug-HLA combination represents a significant challenge. Recently, we investigated the binding mode of abacavir with the HLA-B57:01 variant using molecular docking. Herein, we developed a new ensemble screening workflow involving three X-ray crystal derived docking procedures to screen the DrugBank database and identify potentially HLA-B57:01 liable drugs. Then, we compared our workflow's performance with another model recently developed by Metushi et al., which proposed seven in silico HLA-B*57:01 actives, but were later found to be experimentally inactive.
After curation, there were over 6000 approved and experimental drugs remaining in DrugBank for docking using Schrodinger's GLIDE SP and XP scoring functions. Docking was performed with our new consensus-like ensemble workflow, relying on three different X-ray crystals (3VRI, 3VRJ, and 3UPR) in presence and absence of co-binding peptides. The binding modes of HLA-B*57:01 hit compounds for all three peptides were further explored using 3D interaction fingerprints and hierarchical clustering.
The screening resulted in 22 hit compounds forecasted to bind HLA-B*57:01 in all docking conditions (SP and XP with and without peptides P1, P2, and P3). These 22 compounds afforded 2D-Tanimoto similarities being less than 0.6 when compared to the structure of native abacavir, whereas their 3D binding mode similarities varied in a broader range (0.2-0.8). Hierarchical clustering using a Ward Linkage revealed different clustering patterns for each co-binding peptide. When we docked Metushi et al.'s seven proposed hits using our workflow, our screening platform identified six out of seven as being inactive. Molecular dynamic simulations were used to explore the stability of abacavir and acyclovir in complex with peptide P3.
This study reports on the extensive docking of the DrugBank database and the 22 HLA-B*57:01 liable candidates we identified. Importantly, comparisons between this study and the one by Metushi et al. highlighted new critical and complementary knowledge for the development of future HLA-specific in silico models.
特异质性药物不良反应与药物与人白细胞抗原(HLA)蛋白的结合能力有关。然而,由于存在数千种HLA变体且药物 - HLA复合物的结构数据有限,预测特定的药物 - HLA组合是一项重大挑战。最近,我们使用分子对接研究了阿巴卡韦与HLA - B57:01变体的结合模式。在此,我们开发了一种新的集成筛选工作流程,该流程涉及三种基于X射线晶体的对接程序,用于筛选药物银行数据库并识别潜在的HLA - B57:01易感性药物。然后,我们将我们工作流程的性能与Metushi等人最近开发的另一种模型进行了比较,该模型提出了七种计算机模拟的HLA - B*57:01活性药物,但后来发现其实验上无活性。
经过整理后,药物银行中剩下6000多种已批准和实验性药物,使用薛定谔公司的GLIDE SP和XP评分函数进行对接。使用我们新的类似共识的集成工作流程进行对接,该流程依赖于三种不同的X射线晶体(3VRI、3VRJ和3UPR),有无共结合肽均可。使用3D相互作用指纹和层次聚类进一步探索了所有三种肽的HLA - B*57:01命中化合物的结合模式。
筛选产生了22种命中化合物,预计在所有对接条件下(有和没有肽P1、P2和P3的SP和XP)均与HLA - B*57:01结合。与天然阿巴卡韦的结构相比,这22种化合物的二维塔尼莫托相似度小于0.6,而它们的三维结合模式相似度在更宽的范围内变化(0.2 - 0.8)。使用沃德链接法进行层次聚类揭示了每种共结合肽的不同聚类模式。当我们使用我们的工作流程对接Metushi等人提出的七种命中药物时,我们的筛选平台确定七种中有六种无活性。使用分子动力学模拟来探索阿巴卡韦和阿昔洛韦与肽P3形成复合物时的稳定性。
本研究报告了对药物银行数据库的广泛对接以及我们识别出的22种HLA - B*57:01易感性候选药物。重要的是,本研究与Metushi等人的研究之间的比较突出了未来HLA特异性计算机模拟模型开发的新的关键和补充知识。