Suppr超能文献

红细胞输血相关免疫调节机制。

Mechanisms of red blood cell transfusion-related immunomodulation.

作者信息

Remy Kenneth E, Hall Mark W, Cholette Jill, Juffermans Nicole P, Nicol Kathleen, Doctor Allan, Blumberg Neil, Spinella Philip C, Norris Philip J, Dahmer Mary K, Muszynski Jennifer A

机构信息

Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri.

Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio.

出版信息

Transfusion. 2018 Mar;58(3):804-815. doi: 10.1111/trf.14488. Epub 2018 Jan 30.

Abstract

Red blood cell (RBC) transfusion is common in critically ill, postsurgical, and posttrauma patients in whom both systemic inflammation and immune suppression are associated with adverse outcomes. RBC products contain a multitude of immunomodulatory mediators that interact with and alter immune cell function. These interactions can lead to both proinflammatory and immunosuppressive effects. Defining clinical outcomes related to immunomodulatory effects of RBCs in transfused patients remains a challenge, likely due to complex interactions between individual blood product characteristics and patient-specific risk factors. Unpacking these complexities requires an in-depth understanding of the mechanisms of immunomodulatory effects of RBC products. In this review, we outline and classify potential mediators of RBC transfusion-related immunomodulation and provide suggestions for future research directions.

摘要

红细胞(RBC)输血在重症、术后及创伤后患者中很常见,在这些患者中,全身炎症和免疫抑制均与不良预后相关。红细胞制品含有多种免疫调节介质,这些介质可与免疫细胞功能相互作用并改变其功能。这些相互作用可导致促炎和免疫抑制作用。确定与输注患者中红细胞免疫调节作用相关的临床结局仍然是一项挑战,这可能是由于个体血液制品特征与患者特异性风险因素之间存在复杂的相互作用。剖析这些复杂性需要深入了解红细胞制品免疫调节作用的机制。在本综述中,我们概述并分类了与红细胞输血相关免疫调节的潜在介质,并为未来的研究方向提供了建议。

相似文献

1
Mechanisms of red blood cell transfusion-related immunomodulation.
Transfusion. 2018 Mar;58(3):804-815. doi: 10.1111/trf.14488. Epub 2018 Jan 30.
2
Transfusion-related immunomodulation: review of the literature and implications for pediatric critical illness.
Transfusion. 2017 Jan;57(1):195-206. doi: 10.1111/trf.13855. Epub 2016 Oct 2.
3
Red blood cell transfusion and immune function in critically ill children: a prospective observational study.
Transfusion. 2015 Apr;55(4):766-74. doi: 10.1111/trf.12896. Epub 2014 Oct 29.
4
Transfusion-related immunomodulation: a reappraisal.
Curr Opin Hematol. 2017 Nov;24(6):551-557. doi: 10.1097/MOH.0000000000000376.
6
Contrasting effects of stored allogeneic red blood cells and their supernatants on permeability and inflammatory responses in human pulmonary endothelial cells.
Am J Physiol Lung Cell Mol Physiol. 2020 Mar 1;318(3):L533-L548. doi: 10.1152/ajplung.00025.2019. Epub 2020 Jan 8.
7
Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation.
Blood. 2010 May 27;115(21):4284-92. doi: 10.1182/blood-2009-10-245001. Epub 2010 Mar 18.
8
Duration of red blood cell storage and inflammatory marker generation.
Blood Transfus. 2017 Mar;15(2):145-152. doi: 10.2450/2017.0343-16.
10
Red blood cell storage duration and trauma.
Transfus Med Rev. 2015 Apr;29(2):120-6. doi: 10.1016/j.tmrv.2014.09.007. Epub 2014 Dec 18.

引用本文的文献

1
Platelets in infection: intrinsic roles and functional outcomes.
Front Immunol. 2025 Jul 7;16:1616783. doi: 10.3389/fimmu.2025.1616783. eCollection 2025.
3
Role of Lymphopenia in Early prediction of Infection Following Orthotopic Liver Transplantation in Cirrhotic Patients.
Transpl Int. 2025 May 12;38:14372. doi: 10.3389/ti.2025.14372. eCollection 2025.
6
Engineering the Immune Response to Biomaterials.
Adv Sci (Weinh). 2025 May;12(19):e2414724. doi: 10.1002/advs.202414724. Epub 2025 Apr 15.
8
Interactions with and activation of immune cells by CD41a extracellular vesicles.
Front Immunol. 2025 Feb 14;16:1509078. doi: 10.3389/fimmu.2025.1509078. eCollection 2025.
9
Predictive model for postoperative pneumonia in patients with esophageal cancer after esophagectomy.
Front Oncol. 2025 Feb 14;15:1529308. doi: 10.3389/fonc.2025.1529308. eCollection 2025.

本文引用的文献

2
Red blood cell membrane water permeability increases with length of ex vivo storage.
Cryobiology. 2017 Jun;76:51-58. doi: 10.1016/j.cryobiol.2017.04.009. Epub 2017 Apr 26.
3
Red blood cell metabolic responses to refrigerated storage, rejuvenation, and frozen storage.
Transfusion. 2017 Apr;57(4):1019-1030. doi: 10.1111/trf.14034. Epub 2017 Mar 10.
4
Duration of red blood cell storage and inflammatory marker generation.
Blood Transfus. 2017 Mar;15(2):145-152. doi: 10.2450/2017.0343-16.
5
Impact of technical and assay variation on reporting of hemolysis in stored red blood cell products.
Clin Chim Acta. 2017 May;468:90-97. doi: 10.1016/j.cca.2017.02.013. Epub 2017 Feb 20.
6
Quality and Safety of Blood Products.
J Blood Transfus. 2016;2016:2482157. doi: 10.1155/2016/2482157. Epub 2016 Dec 29.
7
Quality Assessment of Established and Emerging Blood Components for Transfusion.
J Blood Transfus. 2016;2016:4860284. doi: 10.1155/2016/4860284. Epub 2016 Dec 14.
8
Transfusion-related immunomodulation: review of the literature and implications for pediatric critical illness.
Transfusion. 2017 Jan;57(1):195-206. doi: 10.1111/trf.13855. Epub 2016 Oct 2.
9
Red blood cell storage age - what we know from clinical trials.
Expert Rev Hematol. 2016 Nov;9(11):1011-1013. doi: 10.1080/17474086.2016.1243051. Epub 2016 Oct 8.
10
Bioactive lipids accumulate in stored red blood cells despite leukoreduction: a targeted metabolomics study.
Transfusion. 2016 Oct;56(10):2560-2570. doi: 10.1111/trf.13748. Epub 2016 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验