Suppr超能文献

基于光刻技术在独立的氮化硅和石墨烯薄膜中制造纳米孔阵列。

Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes.

作者信息

Verschueren Daniel V, Yang Wayne, Dekker Cees

出版信息

Nanotechnology. 2018 Apr 6;29(14):145302. doi: 10.1088/1361-6528/aaabce.

Abstract

We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

摘要

我们报道了一种基于电子束光刻和反应离子蚀刻在独立的氮化硅和石墨烯膜上制造纳米孔阵列的简单且可扩展的技术。通过控制单次电子束曝光的剂量,可以在这两种材料中高精度地制造出直径小至16纳米的任何尺寸的圆形纳米孔。我们通过使双链DNA穿过用这种方法制造的孔来展示这些纳米孔的传感能力,并发现其信噪比特性与透射电子显微镜钻出的纳米孔相当。这种基于光刻的通用方法允许高通量制造纳米孔,并且原则上可以用于任何基板,特别是由可转移二维材料制成的膜。

相似文献

1
Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes.
Nanotechnology. 2018 Apr 6;29(14):145302. doi: 10.1088/1361-6528/aaabce.
2
Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements.
ACS Nano. 2020 Jun 23;14(6):6715-6728. doi: 10.1021/acsnano.9b09964. Epub 2020 Apr 27.
3
Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
Nanotechnology. 2015 Aug 7;26(31):314001. doi: 10.1088/0957-4484/26/31/314001. Epub 2015 Jul 16.
4
Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
Small. 2018 May;14(18):e1703307. doi: 10.1002/smll.201703307. Epub 2017 Dec 18.
5
Programmed synthesis of freestanding graphene nanomembrane arrays.
Small. 2015 Feb 4;11(5):597-603. doi: 10.1002/smll.201402230. Epub 2014 Sep 18.
6
Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection.
Nanotechnology. 2017 Jan 27;28(4):045302. doi: 10.1088/1361-6528/28/4/045302. Epub 2016 Dec 16.
7
Optical properties of plasmonic nanopore arrays prepared by electron beam and colloidal lithography.
Nanoscale Adv. 2019 Oct 7;1(11):4282-4289. doi: 10.1039/c9na00585d. eCollection 2019 Nov 5.
8
Hydrophilic and size-controlled graphene nanopores for protein detection.
Nanotechnology. 2016 Dec 9;27(49):495301. doi: 10.1088/0957-4484/27/49/495301. Epub 2016 Nov 9.
10
Facile and Ultraclean Graphene-on-Glass Nanopores by Controlled Electrochemical Etching.
ACS Sens. 2020 Aug 28;5(8):2317-2325. doi: 10.1021/acssensors.0c00883. Epub 2020 Aug 19.

引用本文的文献

1
The Electric Field in Solid State Nanopores Causes Dissociation of Strong Biomolecular Interactions.
Nano Lett. 2025 Jun 18;25(24):9654-9661. doi: 10.1021/acs.nanolett.5c01447. Epub 2025 May 19.
2
Transmembrane voltage-gated nanopores controlled by electrically tunable in-pore chemistry.
Nat Commun. 2025 Feb 5;16(1):1089. doi: 10.1038/s41467-025-56052-0.
3
Localized Nanopore Fabrication in Silicon Nitride Membranes by Femtosecond Laser Exposure and Subsequent Controlled Breakdown.
ACS Appl Mater Interfaces. 2025 Feb 5;17(5):8737-8748. doi: 10.1021/acsami.5c00255. Epub 2025 Jan 27.
4
2D Materials for Potable Water Application: Basic Nanoarchitectonics and Recent Progresses.
Small. 2024 Dec;20(51):e2407160. doi: 10.1002/smll.202407160. Epub 2024 Oct 10.
5
Label-Free Imaging of DNA Interactions with 2D Materials.
ACS Photonics. 2024 Jan 10;11(2):737-744. doi: 10.1021/acsphotonics.3c01604. eCollection 2024 Feb 21.
6
A DNA turbine powered by a transmembrane potential across a nanopore.
Nat Nanotechnol. 2024 Mar;19(3):338-344. doi: 10.1038/s41565-023-01527-8. Epub 2023 Oct 26.
7
The New Era of High-Throughput Nanoelectrochemistry.
Anal Chem. 2023 Jan 10;95(1):319-356. doi: 10.1021/acs.analchem.2c05105.
8
Optical properties of plasmonic nanopore arrays prepared by electron beam and colloidal lithography.
Nanoscale Adv. 2019 Oct 7;1(11):4282-4289. doi: 10.1039/c9na00585d. eCollection 2019 Nov 5.
10
Nanopore fingerprinting of supramolecular DNA nanostructures.
Biophys J. 2022 Dec 20;121(24):4882-4891. doi: 10.1016/j.bpj.2022.08.020. Epub 2022 Aug 18.

本文引用的文献

2
Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.
Small. 2017 Aug;13(31). doi: 10.1002/smll.201700876. Epub 2017 Jun 16.
3
Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection.
Nanotechnology. 2017 Jan 27;28(4):045302. doi: 10.1088/1361-6528/28/4/045302. Epub 2016 Dec 16.
4
Single-layer MoS2 nanopores as nanopower generators.
Nature. 2016 Aug 11;536(7615):197-200. doi: 10.1038/nature18593. Epub 2016 Jul 13.
5
Ion selectivity of graphene nanopores.
Nat Commun. 2016 Apr 22;7:11408. doi: 10.1038/ncomms11408.
6
Graphene nanodevices for DNA sequencing.
Nat Nanotechnol. 2016 Feb;11(2):127-36. doi: 10.1038/nnano.2015.307.
7
Graphene Squeeze-Film Pressure Sensors.
Nano Lett. 2016 Jan 13;16(1):568-71. doi: 10.1021/acs.nanolett.5b04251. Epub 2015 Dec 29.
8
Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond.
Chem Soc Rev. 2016 Feb 7;45(3):476-93. doi: 10.1039/c5cs00512d. Epub 2015 Nov 27.
9
Graphene Materials for Electrochemical Capacitors.
J Phys Chem Lett. 2013 Apr 18;4(8):1244-53. doi: 10.1021/jz400160k. Epub 2013 Apr 1.
10
Electrical pulse fabrication of graphene nanopores in electrolyte solution.
Appl Phys Lett. 2015 May 18;106(20):203109. doi: 10.1063/1.4921620. Epub 2015 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验