Tsutsui Makusu, Hsu Wei-Lun, Hsu Chien, Garoli Denis, Weng Shukun, Daiguji Hirofumi, Kawai Tomoji
The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan.
Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Nat Commun. 2025 Feb 5;16(1):1089. doi: 10.1038/s41467-025-56052-0.
Gating is a fundamental process in ion channels configured to open and close in response to specific stimuli such as voltage across cell membranes thereby enabling the excitability of neurons. Here we report on voltage-gated solid-state nanopores by electrically tunable chemical reactions. We demonstrate repetitive precipitation and dissolution of metal phosphates in a pore through manipulations of cation flow by transmembrane voltage. Under negative voltages, precipitates grow to reduce ionic current by occluding the nanopore, while inverting the voltage polarity dissolves the phosphate compounds reopening the pore to ionic flux. Reversible actuation of these physicochemical processes creates a nanofluidic diode of rectification ratio exceeding 40000. The dynamic nature of the in-pore reactions also facilitates a memristor of sub-nanowatt power consumption. Leveraging chemical degrees of freedom, the present method may be useful for creating iontronic circuits of tunable characteristics toward neuromorphic systems.
门控是离子通道中的一个基本过程,离子通道被配置为响应特定刺激(如跨细胞膜的电压)而打开和关闭,从而使神经元具有兴奋性。在此,我们报告通过电可调化学反应实现的电压门控固态纳米孔。我们通过跨膜电压对阳离子流的操纵,证明了金属磷酸盐在孔中反复沉淀和溶解。在负电压下,沉淀物生长,通过堵塞纳米孔来降低离子电流,而反转电压极性则溶解磷酸盐化合物,使孔重新对离子通量开放。这些物理化学过程的可逆驱动产生了整流比超过40000的纳米流体二极管。孔内反应的动态特性还促进了亚纳瓦功耗的忆阻器。利用化学自由度,本方法可能有助于创建具有可调特性的离子电子电路,以用于神经形态系统。