Suppr超能文献

硅化二磷作为易于处理的锂电池阳极材料的表面和电化学研究——磷路径。

Surface and Electrochemical Studies on Silicon Diphosphide as Easy-to-Handle Anode Material for Lithium-Based Batteries-the Phosphorus Path.

机构信息

Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V. , Helmholtzstraße 20, D-01069 Dresden, Germany.

Department of Inorganic Chemistry, Technische Universität Dresden , Bergstraße 66, D-01069 Dresden, Germany.

出版信息

ACS Appl Mater Interfaces. 2018 Feb 28;10(8):7096-7106. doi: 10.1021/acsami.7b18697. Epub 2018 Feb 13.

Abstract

The electrochemical characteristics of silicon diphosphide (SiP) as a new anode material for future lithium-ion batteries (LIBs) are evaluated. The high theoretical capacity of about 3900 mA h g (fully lithiated state: LiSi + LiP) renders silicon diphosphide as a highly promising candidate to replace graphite (372 mA h g) as the standard anode to significantly increase the specific energy density of LIBs. The proposed mechanism of SiP is divided into a conversion reaction of phosphorus species, followed by an alloying reaction forming lithium silicide phases. In this study, we focus on the conversion mechanism during cycling and report on the phase transitions of SiP during lithiation and delithiation. By using ex situ analysis techniques such as X-ray powder diffraction, formed reaction products are identified. Magic angle spinning nuclear magnetic resonance spectroscopy is applied for the characterization of long-range ordered compounds, whereas X-ray photoelectron spectroscopy gives information of the surface-layer species at the interface of active material and electrolyte. Our SiP anode material shows a high initial capacity of about 2700 mA h g, whereas a fast capacity fading during the first few cycles occurs which is not necessarily expected. On the basis of our results, we conclude that besides other degradation effects, such as electrolyte decomposition and electrical contact loss, the rapid capacity fading originates from the formation of a low ion-conductive layer of LiP. This insulating layer hinders lithium-ion diffusion during lithiation and thereby mainly contributes to fast capacity fading.

摘要

我们评估了磷化硅(SiP)作为未来锂离子电池(LIB)新型阳极材料的电化学特性。其约 3900 mA h g 的高理论容量(完全锂化状态:LiSi + LiP)使得磷化硅成为极具前景的候选材料,有望替代石墨(372 mA h g)作为标准阳极,从而显著提高 LIB 的比能量密度。SiP 的提出机制分为磷物种的转化反应,然后是形成锂硅化物相的合金化反应。在这项研究中,我们重点研究了循环过程中的转化机制,并报告了 SiP 在锂化和脱锂过程中的相变。通过使用原位分析技术,如 X 射线粉末衍射,确定了形成的反应产物。魔角旋转核磁共振光谱用于表征长程有序化合物,而 X 射线光电子能谱则提供了活性材料与电解质界面的表面层物种信息。我们的 SiP 阳极材料表现出约 2700 mA h g 的初始高容量,然而在最初的几个循环中会出现快速的容量衰减,这是出乎意料的。基于我们的结果,我们得出结论,除了其他降解效应,如电解质分解和电接触损失之外,快速容量衰减源于 LiP 的低离子导电层的形成。这种绝缘层阻碍了锂在锂化过程中的扩散,从而主要导致快速容量衰减。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验