Son Hyeoncheol, Lee Sun-Mi, Kim Kyung-Jin
School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea.
J Microbiol Biotechnol. 2018 Apr 28;28(4):571-578. doi: 10.4014/jmb.1711.11026.
Biofuel production using lignocellulosic biomass is gaining attention because it can be substituted for fossil fuels without competing with edible resources. However, because does not have a -xylose metabolic pathway, oxidoreductase or isomerase pathways must be introduced to utilize -xylose from lignocellulosic biomass in . To elucidate the biochemical properties of xylose isomerase (XI) from sp. E2 (XI), we determine its crystal structure in complex with substrate mimic glycerol. An amino acid sequence comparison with other reported XIs and the relative activity measurements using five kinds of divalent metal ions confirmed that XI belongs to class II XI. Moreover kinetic analysis of XI was also performed using Mn²⁺, the preferred divalent metal ion for XI. In addition, the substrate-binding mode of XI could be predicted with the substrate mimic glycerol bound to the active site. These studies may provide structural information to enhance -xylose utilization for biofuel production.
利用木质纤维素生物质生产生物燃料正受到关注,因为它可以替代化石燃料,而无需与食用资源竞争。然而,由于[具体生物]没有木糖代谢途径,必须引入氧化还原酶或异构酶途径,以便在[具体生物]中利用来自木质纤维素生物质的木糖。为了阐明来自[具体生物]E2菌株的木糖异构酶(XI)的生化特性,我们确定了其与底物模拟物甘油结合的晶体结构。与其他已报道的XI进行氨基酸序列比较,并使用五种二价金属离子进行相对活性测量,证实XI属于II类XI。此外,还使用XI的首选二价金属离子Mn²⁺对XI进行了动力学分析。此外,通过结合到活性位点的底物模拟物甘油,可以预测XI的底物结合模式。这些研究可能为提高用于生物燃料生产的木糖利用率提供结构信息。