Kuyper Marko, Winkler Aaron A, van Dijken Johannes P, Pronk Jack T
Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
FEMS Yeast Res. 2004 Mar;4(6):655-64. doi: 10.1016/j.femsyr.2004.01.003.
When xylose metabolism in yeasts proceeds exclusively via NADPH-specific xylose reductase and NAD-specific xylitol dehydrogenase, anaerobic conversion of the pentose to ethanol is intrinsically impossible. When xylose reductase has a dual specificity for both NADPH and NADH, anaerobic alcoholic fermentation is feasible but requires the formation of large amounts of polyols (e.g., xylitol) to maintain a closed redox balance. As a result, the ethanol yield on xylose will be sub-optimal. This paper demonstrates that anaerobic conversion of xylose to ethanol, without substantial by-product formation, is possible in Saccharomyces cerevisiae when a heterologous xylose isomerase (EC 5.3.1.5) is functionally expressed. Transformants expressing the XylA gene from the anaerobic fungus Piromyces sp. E2 (ATCC 76762) grew in synthetic medium in shake-flask cultures on xylose with a specific growth rate of 0.005 h(-1). After prolonged cultivation on xylose, a mutant strain was obtained that grew aerobically and anaerobically on xylose, at specific growth rates of 0.18 and 0.03 h(-1), respectively. The anaerobic ethanol yield was 0.42 g ethanol x g xylose(-1) and also by-product formation was comparable to that of glucose-grown anaerobic cultures. These results illustrate that only minimal genetic engineering is required to recruit a functional xylose metabolic pathway in Saccharomyces cerevisiae. Activities and/or regulatory properties of native S. cerevisiae gene products can subsequently be optimised via evolutionary engineering. These results provide a gateway towards commercially viable ethanol production from xylose with S. cerevisiae.
当酵母中的木糖代谢仅通过NADPH特异性木糖还原酶和NAD特异性木糖醇脱氢酶进行时,将戊糖厌氧转化为乙醇本质上是不可能的。当木糖还原酶对NADPH和NADH都具有双重特异性时,厌氧酒精发酵是可行的,但需要形成大量多元醇(如木糖醇)以维持封闭的氧化还原平衡。结果,木糖上的乙醇产量将不是最优的。本文证明,当在酿酒酵母中功能性表达异源木糖异构酶(EC 5.3.1.5)时,木糖厌氧转化为乙醇且无大量副产物形成是可能的。表达来自厌氧真菌皮罗霉菌E2(ATCC 76762)的XylA基因的转化体在摇瓶培养的合成培养基中以0.005 h⁻¹的比生长速率在木糖上生长。在木糖上长期培养后,获得了一种突变菌株,该菌株在木糖上有氧和厌氧生长,比生长速率分别为0.18和0.03 h⁻¹。厌氧乙醇产量为0.42 g乙醇/ g木糖⁻¹,副产物形成也与葡萄糖厌氧培养相当。这些结果表明,在酿酒酵母中引入功能性木糖代谢途径仅需进行最少的基因工程。随后可以通过进化工程优化酿酒酵母天然基因产物的活性和/或调控特性。这些结果为利用酿酒酵母从木糖商业生产可行的乙醇提供了途径。