MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Cell Rep. 2018 Jan 23;22(4):1090-1102. doi: 10.1016/j.celrep.2017.12.099. Epub 2018 Jan 28.
Histone post-translational modifications (PTMs) and their recognition by histone readers exert crucial functions in eukaryotes. Despite extensive studies, conservation and diversity of histone PTM regulation between animals and plants remain less explored because of a lack of systematic knowledge of histone readers in plants. Based on a high-throughput surface plasmon resonance imaging (SPRi) platform, we report the lab-on-chip profiling of interactions between 204 putative reader domains and 11 types of histone peptides in Arabidopsis thaliana. Eleven reader hits were then chosen for histone combinatorial readout pattern profiling. Systematic analysis of histone PTM recognition in Arabidopsis thaliana reveals that plant and human histone readers share conservation in domain types and recognition mechanisms. The differences in particular histone mark recognition by transcription regulator EML1 and DNA damage repair factor MSH6 indicate plant-specific histone PTMs function in Arabidopsis thaliana acquired during evolution.
组蛋白翻译后修饰(PTMs)及其被组蛋白读取器的识别在真核生物中发挥着关键作用。尽管进行了广泛的研究,但由于缺乏对植物中组蛋白读取器的系统了解,动物和植物之间的组蛋白 PTM 调控的保守性和多样性仍未得到充分探索。基于高通量表面等离子体共振成像(SPRi)平台,我们报告了拟议的 204 个读取器结构域与拟南芥中 11 种组蛋白肽之间相互作用的芯片上分析。然后选择了 11 个读取器命中来进行组蛋白组合读取模式分析。对拟南芥中组蛋白 PTM 识别的系统分析表明,植物和人类的组蛋白读取器在结构域类型和识别机制上具有保守性。转录调节剂 EML1 和 DNA 损伤修复因子 MSH6 对特定组蛋白标记的识别差异表明,在进化过程中,植物特有的组蛋白 PTM 在拟南芥中发挥作用。