From the Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, Alabama 35294 and.
the Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
J Biol Chem. 2018 Mar 16;293(11):4110-4121. doi: 10.1074/jbc.RA117.001294. Epub 2018 Jan 31.
PRKR-like endoplasmic reticulum kinase (PERK) is one of the major sensor proteins that detect protein folding imbalances during endoplasmic reticulum (ER) stress. However, it remains unclear how ER stress activates PERK to initiate a downstream unfolded protein response (UPR). Here, we found that PERK's luminal domain can recognize and selectively interact with misfolded proteins but not with native proteins. Screening a phage-display library, we identified a peptide substrate, P16, of the PERK luminal domain and confirmed that P16 efficiently competes with misfolded proteins for binding this domain. To unravel the mechanism by which the PERK luminal domain interacts with misfolded proteins, we determined the crystal structure of the bovine PERK luminal domain complexed with P16 to 2.8-Å resolution. The structure revealed that PERK's luminal domain binds the peptide through a conserved hydrophobic groove. Substitutions within hydrophobic regions of the PERK luminal domain abolished the binding between PERK and misfolded proteins. We also noted that peptide binding results in major conformational changes in the PERK luminal domain that may favor PERK oligomerization. The structure of the PERK luminal domain-P16 complex suggested stacking of the luminal domain that leads to PERK oligomerization and activation via autophosphorylation after ligand binding. Collectively, our structural and biochemical results strongly support a ligand-driven model in which the PERK luminal domain interacts directly with misfolded proteins to induce PERK oligomerization and activation, resulting in ER stress signaling and the UPR.
蛋白激酶 R 样内质网激酶(PERK)是内质网(ER)应激过程中检测蛋白折叠失衡的主要传感器蛋白之一。然而,目前尚不清楚 ER 应激如何激活 PERK 以启动下游未折叠蛋白反应(UPR)。在这里,我们发现 PERK 的腔结构域可以识别并选择性地与错误折叠的蛋白相互作用,但不能与天然蛋白相互作用。通过筛选噬菌体展示文库,我们鉴定出 PERK 腔结构域的肽底物 P16,并证实 P16 可以有效地与错误折叠的蛋白竞争结合该结构域。为了解析 PERK 腔结构域与错误折叠蛋白相互作用的机制,我们测定了牛 PERK 腔结构域与 P16 复合物的晶体结构,分辨率为 2.8 Å。该结构揭示了 PERK 的腔结构域通过保守的疏水性凹槽结合肽。PERK 腔结构域疏水区的突变消除了 PERK 与错误折叠蛋白之间的结合。我们还注意到,肽结合导致 PERK 腔结构域发生主要构象变化,这可能有利于 PERK 寡聚化。PERK 腔结构域-P16 复合物的结构表明,腔结构域的堆积导致 PERK 寡聚化和配体结合后的自磷酸化激活。总的来说,我们的结构和生化结果强烈支持配体驱动的模型,即 PERK 腔结构域直接与错误折叠的蛋白相互作用,诱导 PERK 寡聚化和激活,从而引发 ER 应激信号和 UPR。