Zhou Jiahai, Liu Chuan Yin, Back Sung Hoon, Clark Robert L, Peisach Daniel, Xu Zhaohui, Kaufman Randal J
Life Sciences Institute, LSI 3163B, Department of Biological Chemistry, University of Michigan Medical Center, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14343-8. doi: 10.1073/pnas.0606480103. Epub 2006 Sep 14.
The unfolded protein response (UPR) is an evolutionarily conserved mechanism by which all eukaryotic cells adapt to the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Inositol-requiring kinase 1 (IRE1) and PKR-related ER kinase (PERK) are two type I transmembrane ER-localized protein kinase receptors that signal the UPR through a process that involves homodimerization and autophosphorylation. To elucidate the molecular basis of the ER transmembrane signaling event, we determined the x-ray crystal structure of the luminal domain of human IRE1alpha. The monomer of the luminal domain comprises a unique fold of a triangular assembly of beta-sheet clusters. Structural analysis identified an extensive dimerization interface stabilized by hydrogen bonds and hydrophobic interactions. Dimerization creates an MHC-like groove at the interface. However, because this groove is too narrow for peptide binding and the purified luminal domain forms high-affinity dimers in vitro, peptide binding to this groove is not required for dimerization. Consistent with our structural observations, mutations that disrupt the dimerization interface produced IRE1alpha molecules that failed to either dimerize or activate the UPR upon ER stress. In addition, mutations in a structurally homologous region within PERK also prevented dimerization. Our structural, biochemical, and functional studies in vivo altogether demonstrate that IRE1 and PERK have conserved a common molecular interface necessary and sufficient for dimerization and UPR signaling.
未折叠蛋白反应(UPR)是一种进化上保守的机制,所有真核细胞通过该机制适应内质网(ER)中未折叠蛋白的积累。肌醇需求激酶1(IRE1)和PKR相关内质网激酶(PERK)是两种I型跨膜内质网定位蛋白激酶受体,它们通过涉及同源二聚化和自磷酸化的过程发出UPR信号。为了阐明内质网跨膜信号事件的分子基础,我们确定了人IRE1α腔结构域的X射线晶体结构。腔结构域的单体包含β-折叠簇三角形组装的独特折叠。结构分析确定了一个由氢键和疏水相互作用稳定的广泛二聚化界面。二聚化在界面处形成一个类似MHC的凹槽。然而,由于这个凹槽对于肽结合来说太窄,并且纯化的腔结构域在体外形成高亲和力二聚体,因此二聚化不需要肽与这个凹槽结合。与我们的结构观察结果一致,破坏二聚化界面的突变产生了在ER应激时未能二聚化或激活UPR的IRE1α分子。此外,PERK内结构同源区域的突变也阻止了二聚化。我们在体内的结构、生化和功能研究共同表明,IRE1和PERK保留了一个对于二聚化和UPR信号传导必要且充分的共同分子界面。