Suppr超能文献

一种离散纤维弥散方法,用于在纤维组织建模中排除受压纤维。

A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.

机构信息

Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16-II, 8010 Graz, Austria.

School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8SQ, Scotland, UK.

出版信息

J R Soc Interface. 2018 Jan;15(138). doi: 10.1098/rsif.2017.0766.

Abstract

Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost.

摘要

最近,基于角积分方法的微球方法已被用于排除在软生物组织建模中受压纤维。然而,最近的研究表明,即使不排除受压纤维,许多在单位球上广泛使用的数值积分方案对于大变形问题也是不准确的。因此,在本研究中,我们提出了一种基于系统方法的离散纤维弥散模型,该方法将单位半球离散为有限数量的基本区域,如球面三角形。在每个基本区域上,我们定义一个代表性纤维方向和一个离散纤维密度。然后,根据变形的代表性纤维方向乘以相应的离散纤维密度,来近似所有分布在每个基本区域的纤维的应变能。然后通过对所有基本区域的纤维贡献进行求和,得到纤维的总应变能。这种处理方法通过仅评估代表性纤维方向的拉伸-压缩状态,以离散的方式排除受压纤维。我们已经将该模型实现到一个有限元程序中,并通过三个具有代表性的例子来说明,包括单位立方体的简单拉伸和简单剪切,以及矩形条的非均匀单轴拉伸。与之前开发的连续纤维弥散模型相比,所有三个例子的结果都是一致和准确的,并且计算成本显著降低。

相似文献

2
Numerical implementation of constitutive model for arterial layers with distributed collagen fibre orientations.
Comput Methods Biomech Biomed Engin. 2015;18(8):816-28. doi: 10.1080/10255842.2013.847928. Epub 2013 Oct 29.
4
A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
J Mech Behav Biomed Mater. 2013 Jun;22:84-94. doi: 10.1016/j.jmbbm.2013.02.007. Epub 2013 Mar 14.
5
On fibre dispersion modelling of soft biological tissues: a review.
Proc Math Phys Eng Sci. 2019 Apr;475(2224):20180736. doi: 10.1098/rspa.2018.0736. Epub 2019 Apr 3.
7
A micromechanically-based, three-dimensional interface finite element for the modelling of the periodontal ligament.
Comput Methods Biomech Biomed Engin. 2006 Aug;9(4):243-56. doi: 10.1080/10255840600733364.
8
Assessing the microstructural response to applied deformation in porcine passive skeletal muscle.
J Mech Behav Biomed Mater. 2014 Dec;40:115-126. doi: 10.1016/j.jmbbm.2014.08.019. Epub 2014 Aug 30.
9
Nonlinear elasticity of biological tissues with statistical fibre orientation.
J R Soc Interface. 2010 Jun 6;7(47):955-66. doi: 10.1098/rsif.2009.0502. Epub 2010 Jan 6.
10
Modelling skeletal muscle fibre orientation arrangement.
Comput Methods Biomech Biomed Engin. 2011 Dec;14(12):1079-88. doi: 10.1080/10255842.2010.509100. Epub 2011 Jun 24.

引用本文的文献

1
Mechanisms of aortic dissection: From pathological changes to experimental and models.
Prog Mater Sci. 2025 Apr;150. doi: 10.1016/j.pmatsci.2024.101363. Epub 2024 Sep 12.
2
[Study on direct ventricular assist loading mode based on a finite element method].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Aug 25;41(4):782-789. doi: 10.7507/1001-5515.202312070.
4
Histology-informed multiscale modeling of human brain white matter.
Sci Rep. 2023 Nov 10;13(1):19641. doi: 10.1038/s41598-023-46600-3.
5
A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft Tissue.
J Elast. 2021 Aug;145(1-2):295-319. doi: 10.1007/s10659-021-09843-7. Epub 2021 Jun 16.
6
Computationally Efficient Concept of Representative Directions for Anisotropic Fibrous Materials.
Polymers (Basel). 2022 Aug 15;14(16):3314. doi: 10.3390/polym14163314.
7
Risky interpretations across the length scales: continuum vs. discrete models for soft tissue mechanobiology.
Biomech Model Mechanobiol. 2022 Apr;21(2):433-454. doi: 10.1007/s10237-021-01543-4. Epub 2022 Jan 5.
8
A generic physics-informed neural network-based constitutive model for soft biological tissues.
Comput Methods Appl Mech Eng. 2020 Dec 1;372. doi: 10.1016/j.cma.2020.113402. Epub 2020 Sep 10.
9
[Experimental measurement and modeling analysis of active and passive mechanical properties of arterial vessel wall].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Dec 25;37(6):939-947. doi: 10.7507/1001-5515.202008030.
10
Three-Dimensional Traction Microscopy with a Fiber-Based Constitutive Model.
Comput Methods Appl Mech Eng. 2019 Dec 1;357. doi: 10.1016/j.cma.2019.112579. Epub 2019 Aug 17.

本文引用的文献

2
Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae.
J Mech Behav Biomed Mater. 2016 Sep;62:607-618. doi: 10.1016/j.jmbbm.2016.05.034. Epub 2016 Jun 4.
4
High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography.
J Biophotonics. 2017 Feb;10(2):231-241. doi: 10.1002/jbio.201500229. Epub 2015 Dec 11.
5
Modelling non-symmetric collagen fibre dispersion in arterial walls.
J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2015.0188.
6
The role of elastin and collagen in the softening behavior of the human thoracic aortic media.
J Biomech. 2013 Jul 26;46(11):1859-65. doi: 10.1016/j.jbiomech.2013.04.025. Epub 2013 Jun 2.
7
An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues.
J R Soc Interface. 2012 Dec 26;10(80):20120760. doi: 10.1098/rsif.2012.0760. Print 2013 Mar 6.
9
Structural analysis of articular cartilage using multiphoton microscopy: input for biomechanical modeling.
IEEE Trans Med Imaging. 2011 Sep;30(9):1635-48. doi: 10.1109/TMI.2011.2139222. Epub 2011 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验