文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

己糖激酶 2 耗竭抑制肝癌中的糖酵解并诱导氧化磷酸化,并增强二甲双胍的敏感性。

Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin.

机构信息

Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.

Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA.

出版信息

Nat Commun. 2018 Jan 31;9(1):446. doi: 10.1038/s41467-017-02733-4.


DOI:10.1038/s41467-017-02733-4
PMID:29386513
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5792493/
Abstract

Hepatocellular carcinoma (HCC) cells are metabolically distinct from normal hepatocytes by expressing the high-affinity hexokinase (HK2) and suppressing glucokinase (GCK). This is exploited to selectively target HCC. Hepatic HK2 deletion inhibits tumor incidence in a mouse model of hepatocarcinogenesis. Silencing HK2 in human HCC cells inhibits tumorigenesis and increases cell death, which cannot be restored by GCK or mitochondrial binding deficient HK2. Upon HK2 silencing, glucose flux to pyruvate and lactate is inhibited, but TCA fluxes are maintained. Serine uptake and glycine secretion are elevated suggesting increased requirement for one-carbon contribution. Consistently, vulnerability to serine depletion increases. The decrease in glycolysis is coupled to elevated oxidative phosphorylation, which is diminished by metformin, further increasing cell death and inhibiting tumor growth. Neither HK2 silencing nor metformin alone inhibits mTORC1, but their combination inhibits mTORC1 in an AMPK-independent and REDD1-dependent mechanism. Finally, HK2 silencing synergizes with sorafenib to inhibit tumor growth.

摘要

肝细胞癌 (HCC) 细胞通过表达高亲和力己糖激酶 (HK2) 和抑制葡萄糖激酶 (GCK) 而在代谢上与正常肝细胞不同。这被用来选择性地靶向 HCC。在肝癌发生的小鼠模型中,肝 HK2 缺失抑制肿瘤的发生。沉默人 HCC 细胞中的 HK2 可抑制肿瘤发生并增加细胞死亡,而 GCK 或结合缺陷的线粒体 HK2 不能恢复这种作用。沉默 HK2 后,葡萄糖向丙酮酸和乳酸的通量被抑制,但 TCA 通量保持不变。丝氨酸摄取和甘氨酸分泌增加,表明对一碳贡献的需求增加。一致地,对丝氨酸耗竭的敏感性增加。糖酵解的减少与氧化磷酸化的增加相关联,而二甲双胍降低了氧化磷酸化,进一步增加了细胞死亡并抑制了肿瘤生长。单独沉默 HK2 或二甲双胍都不能抑制 mTORC1,但它们的组合以 AMPK 非依赖性和 REDD1 依赖性机制抑制 mTORC1。最后,沉默 HK2 与索拉非尼协同抑制肿瘤生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/9aecb3f8dc95/41467_2017_2733_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/765b7b28ef49/41467_2017_2733_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/55cc2d4a3b14/41467_2017_2733_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/b726699c885e/41467_2017_2733_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/58dbb668aecc/41467_2017_2733_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/af75963b28e0/41467_2017_2733_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/8f7e068c2054/41467_2017_2733_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/6ad70a81e3cc/41467_2017_2733_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/9aecb3f8dc95/41467_2017_2733_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/765b7b28ef49/41467_2017_2733_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/55cc2d4a3b14/41467_2017_2733_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/b726699c885e/41467_2017_2733_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/58dbb668aecc/41467_2017_2733_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/af75963b28e0/41467_2017_2733_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/8f7e068c2054/41467_2017_2733_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/6ad70a81e3cc/41467_2017_2733_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/5792493/9aecb3f8dc95/41467_2017_2733_Fig8_HTML.jpg

相似文献

[1]
Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin.

Nat Commun. 2018-1-31

[2]
Metformin sensitizes sorafenib to inhibit postoperative recurrence and metastasis of hepatocellular carcinoma in orthotopic mouse models.

J Hematol Oncol. 2016-3-8

[3]
By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice.

Oncotarget. 2015-5-30

[4]
STAT3 regulates glycolysis via targeting hexokinase 2 in hepatocellular carcinoma cells.

Oncotarget. 2017-4-11

[5]
Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma.

Br J Cancer. 2012-12-20

[6]
MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway.

Oncotarget. 2015-10-6

[7]
Dauricine upregulates the chemosensitivity of hepatocellular carcinoma cells: Role of repressing glycolysis via miR-199a:HK2/PKM2 modulation.

Food Chem Toxicol. 2018-8-29

[8]
Metformin and insulin impact on clinical outcome in patients with advanced hepatocellular carcinoma receiving sorafenib: Validation study and biological rationale.

Eur J Cancer. 2017-11

[9]
Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway.

Molecules. 2019-5-24

[10]
6-Methoxyethylamino-numonafide inhibits hepatocellular carcinoma xenograft growth as a single agent and in combination with sorafenib.

FASEB J. 2017-12

引用本文的文献

[1]
Investigation and Distinction of Energy Metabolism in Proliferating Hepatocytes and Hepatocellular Carcinoma Cells.

Cells. 2025-8-14

[2]
Diallyl Trisulfide Enhances Doxorubicin Chemosensitivity by Inhibiting the Warburg Effect and Inducing Apoptosis in Breast Cancer Cells.

J Cancer. 2025-7-11

[3]
Bridging dimensions: a comparative analysis of 2D and 3D in vitro models for hepatocellular carcinoma research.

Arch Toxicol. 2025-8-22

[4]
Oxidative and Glycolytic Metabolism: Their Reciprocal Regulation and Dysregulation in Cancer.

Cells. 2025-7-30

[5]
AFF4 promotes tumor progression and cisplatin resistance by modulating the PTEN/PI3K/AKT/mTOR axis to accelerate glycolysis in lung adenocarcinoma.

Cell Biosci. 2025-8-11

[6]
Beyond borders: engineering organ-targeted immunotherapies to overcome site-specific barriers in cancer.

Drug Deliv Transl Res. 2025-8-11

[7]
Aldolase A accelerates hepatocarcinogenesis by refactoring c-Jun transcription.

J Pharm Anal. 2025-7

[8]
Multi-omics dissection of tumor microenvironment-mediated drug resistance: mechanisms and therapeutic reprogramming.

Front Pharmacol. 2025-7-7

[9]
Fructose Metabolism in Cancer: Molecular Mechanisms and Therapeutic Implications.

Int J Med Sci. 2025-6-9

[10]
MiR-22/GLUT1 Axis Induces Metabolic Reprogramming and Sorafenib Resistance in Hepatocellular Carcinoma.

Int J Mol Sci. 2025-4-17

本文引用的文献

[1]
Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?

Nat Rev Cancer. 2016-10

[2]
Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis.

Metab Eng. 2016-9

[3]
Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms.

Cancer Cell. 2016-4-11

[4]
Discovery of a Novel 2,6-Disubstituted Glucosamine Series of Potent and Selective Hexokinase 2 Inhibitors.

ACS Med Chem Lett. 2015-12-28

[5]
The Nurture of Tumors Can Drive Their Metabolic Phenotype.

Cell Metab. 2016-3-8

[6]
(13)C-metabolic flux analysis of co-cultures: A novel approach.

Metab Eng. 2015-9

[7]
Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1.

Nat Commun. 2015-2-4

[8]
Evidence for heightened hexokinase II immunoexpression in hepatocyte dysplasia and hepatocellular carcinoma.

Dig Dis Sci. 2014-11-8

[9]
Understanding the complex-I-ty of metformin action: limiting mitochondrial respiration to improve cancer therapy.

BMC Biol. 2014-10-24

[10]
Metformin--mode of action and clinical implications for diabetes and cancer.

Nat Rev Endocrinol. 2014-1-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索