Suppr超能文献

利用野生稻基因提高耐盐性

Improvement of Salt Tolerance Using Wild Rice Genes.

作者信息

Quan Ruidang, Wang Juan, Hui Jian, Bai Haibo, Lyu Xuelian, Zhu Yongxing, Zhang Haiwen, Zhang Zhijin, Li Shuhua, Huang Rongfeng

机构信息

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.

National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China.

出版信息

Front Plant Sci. 2018 Jan 17;8:2269. doi: 10.3389/fpls.2017.02269. eCollection 2017.

Abstract

Salt stress causes significant reductions in rice production worldwide; thus, improving salt tolerance is a promising approach to meet the increasing food demand. Wild rice germplasm is considered a valuable genetic resource for improving rice cultivars. However, information regarding the improvement of salt tolerance in cultivated rice using wild rice genes is limited. In this study, we identified a salt-tolerant line Dongxiang/Ningjing 15 (DJ15) under salt-stress field conditions from the population of a salt tolerant Dongxiang wild rice × a cultivated rice variety Ningjing16 (NJ16). Genomic resequencing analysis of NJ16, DJ15 and Dongxiang wild rice revealed that the introgressed genomic fragments were unevenly distributed over the 12 chromosomes (Chr.) and mainly identified on Chr. 6, 7, 10, and 11. Using quantitative trait locus (QTL) mapping, we found 9 QTL for salt tolerance (qST) at the seedling stage located on Chr. 1, 3, 4, 5, 6, 8, and 10. In addition, sequence variant analysis within the QTL regions demonstrated that SKC1/HKT8/HKT1;5 and HAK6 transporters along with numerous transcriptional factors were the candidate genes for the salt tolerant QTL. The DJ15/Koshihikari recombinant inbred lines that contained both qST1.2 and qST6, two QTL with the highest effect for salt tolerance, were more tolerant than the parental lines under salt-stress field conditions. Furthermore, the qST6 near-isogenic lines with IR29 background were more tolerant than IR29, indicating that qST1.2 and qST6 could improve salt tolerance in rice. Overall, our study indicates that wild rice genes could markedly improve the salt tolerance of cultivated rice.

摘要

盐胁迫导致全球水稻产量大幅下降;因此,提高耐盐性是满足不断增长的粮食需求的一种有前景的方法。野生稻种质被认为是改良水稻品种的宝贵遗传资源。然而,利用野生稻基因提高栽培稻耐盐性的相关信息有限。在本研究中,我们在盐胁迫田间条件下,从耐盐东乡野生稻×栽培稻品种宁粳16(NJ16)的群体中鉴定出一个耐盐品系东乡/宁粳15(DJ15)。对NJ16、DJ15和东乡野生稻进行基因组重测序分析表明,导入的基因组片段在12条染色体上分布不均,主要在第6、7、10和11号染色体上被鉴定到。利用数量性状位点(QTL)定位,我们在苗期发现了9个位于第1、3、4、5、6、8和10号染色体上的耐盐QTL(qST)。此外,QTL区域内的序列变异分析表明,SKC1/HKT8/HKT1;5和HAK6转运蛋白以及众多转录因子是耐盐QTL的候选基因。同时包含对耐盐性影响最大的两个QTL即qST1.2和qST6的DJ15/越光重组自交系在盐胁迫田间条件下比亲本更耐盐。此外,具有IR29背景的qST6近等基因系比IR29更耐盐,表明qST1.2和qST6可以提高水稻的耐盐性。总体而言,我们的研究表明野生稻基因可以显著提高栽培稻的耐盐性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6b/5776132/98439a0a0d49/fpls-08-02269-g0001.jpg

相似文献

1
Improvement of Salt Tolerance Using Wild Rice Genes.
Front Plant Sci. 2018 Jan 17;8:2269. doi: 10.3389/fpls.2017.02269. eCollection 2017.
2
Functional genomic analysis of K related salt-responsive transporters in tolerant and sensitive genotypes of rice.
Front Plant Sci. 2023 Jan 19;13:1089109. doi: 10.3389/fpls.2022.1089109. eCollection 2022.
4
Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).
PLoS One. 2016 Jan 11;11(1):e0146242. doi: 10.1371/journal.pone.0146242. eCollection 2016.
6
Introgressed Saltol QTL Lines Improves the Salinity Tolerance in Rice at Seedling Stage.
Front Plant Sci. 2020 Jun 11;11:833. doi: 10.3389/fpls.2020.00833. eCollection 2020.
8
Unlocking Allelic Diversity for Sustainable Development of Salinity Stress Tolerance in Rice.
Curr Genomics. 2021 Dec 30;22(6):393-403. doi: 10.2174/1389202922666211005121412.
9
Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm.
Rice (N Y). 2016 Dec;9(1):15. doi: 10.1186/s12284-016-0083-8. Epub 2016 Mar 29.

引用本文的文献

1
Rice Adaptation to Abiotic Stresses Caused by Soil Inorganic Elements.
Int J Mol Sci. 2025 Jul 23;26(15):7116. doi: 10.3390/ijms26157116.
2
Salinity Stress in Rice: Multilayered Approaches for Sustainable Tolerance.
Int J Mol Sci. 2025 Jun 23;26(13):6025. doi: 10.3390/ijms26136025.
3
Usage of wild germplasms for breeding in pan-genomics era.
Breed Sci. 2025 Mar;75(1):51-60. doi: 10.1270/jsbbs.24050. Epub 2025 Feb 21.
4
ST-YOLO: a deep learning based intelligent identification model for salt tolerance of wild rice seedlings.
Front Plant Sci. 2025 Jun 2;16:1595386. doi: 10.3389/fpls.2025.1595386. eCollection 2025.
7
Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding.
Int J Mol Sci. 2024 Oct 11;25(20):10940. doi: 10.3390/ijms252010940.
9
Wild rice: unlocking the future of rice breeding.
Plant Biotechnol J. 2024 Nov;22(11):3218-3226. doi: 10.1111/pbi.14443. Epub 2024 Aug 16.
10
Progress and prospects in harnessing wild relatives for genetic enhancement of salt tolerance in rice.
Front Plant Sci. 2024 Jan 31;14:1253726. doi: 10.3389/fpls.2023.1253726. eCollection 2023.

本文引用的文献

2
Emerging Avenues for Utilization of Exotic Germplasm.
Trends Plant Sci. 2017 Jul;22(7):624-637. doi: 10.1016/j.tplants.2017.04.002. Epub 2017 May 2.
3
A walk on the wild side: Oryza species as source for rice abiotic stress tolerance.
Genet Mol Biol. 2017;40(1 suppl 1):238-252. doi: 10.1590/1678-4685-GMB-2016-0093. Epub 2017 Mar 20.
4
EIN3 and SOS2 synergistically modulate plant salt tolerance.
Sci Rep. 2017 Mar 16;7:44637. doi: 10.1038/srep44637.
5
Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance.
Annu Rev Plant Biol. 2017 Apr 28;68:405-434. doi: 10.1146/annurev-arplant-042916-040936. Epub 2017 Feb 22.
6
Haplotype distribution and association of candidate genes with salt tolerance in Indian wild rice germplasm.
Plant Cell Rep. 2016 Nov;35(11):2295-2308. doi: 10.1007/s00299-016-2035-6. Epub 2016 Aug 2.
7
Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).
PLoS One. 2016 Jan 11;11(1):e0146242. doi: 10.1371/journal.pone.0146242. eCollection 2016.
9
Genomics of crop wild relatives: expanding the gene pool for crop improvement.
Plant Biotechnol J. 2016 Apr;14(4):1070-85. doi: 10.1111/pbi.12454. Epub 2015 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验