Suppr超能文献

海马体网络模型:一种跨诊断的元连接组学方法。

The hippocampal network model: A transdiagnostic metaconnectomic approach.

机构信息

Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

Department of Mathematics, Texas State University, San Marcos, TX, USA; College of Education, Texas State University, San Marcos, TX, USA.

出版信息

Neuroimage Clin. 2018 Jan 8;18:115-129. doi: 10.1016/j.nicl.2018.01.002. eCollection 2018.

Abstract

PURPOSE

The hippocampus plays a central role in cognitive and affective processes and is commonly implicated in neurodegenerative diseases. Our study aimed to identify and describe a hippocampal network model (HNM) using trans-diagnostic MRI data from the BrainMap® database. We used meta-analysis to test the network degeneration hypothesis (NDH) (Seeley et al., 2009) by identifying structural and functional covariance in this hippocampal network.

METHODS

To generate our network model, we used BrainMap's VBM database to perform a region-to-whole-brain (RtWB) meta-analysis of 269 VBM experiments from 165 published studies across a range of 38 psychiatric and neurological diseases reporting hippocampal gray matter density alterations. This step identified 11 significant gray matter foci, or nodes. We subsequently used meta-analytic connectivity modeling (MACM) to define edges of structural covariance between nodes from VBM data as well as functional covariance using the functional task-activation database, also from BrainMap. Finally, we applied a correlation analysis using Pearson's to assess the similarities and differences between the structural and functional covariance models.

KEY FINDINGS

Our hippocampal RtWB meta-analysis reported consistent and significant structural covariance in 11 key regions. The subsequent structural and functional MACMs showed a strong correlation between HNM nodes with a significant structural-functional covariance correlation of  = .377 ( = .000049).

SIGNIFICANCE

This novel method of studying network covariance using VBM and functional meta-analytic techniques allows for the identification of generalizable patterns of functional and structural abnormalities pertaining to the hippocampus. In accordance with the NDH, this framework could have major implications in studying and predicting spatial disease patterns using network-based assays.

摘要

目的

海马体在认知和情感过程中起着核心作用,通常与神经退行性疾病有关。我们的研究旨在使用 BrainMap®数据库中的跨诊断 MRI 数据来识别和描述海马体网络模型 (HNM)。我们使用元分析通过识别这个海马体网络中的结构和功能协变来检验网络退化假说 (NDH)(Seeley 等人,2009)。

方法

为了生成我们的网络模型,我们使用 BrainMap 的 VBM 数据库对来自 165 项研究的 269 项 VBM 实验进行区域到全脑(RtWB)元分析,这些研究涵盖了 38 种精神和神经疾病,报告了海马灰质密度的改变。这一步确定了 11 个显著的灰质焦点,或节点。我们随后使用元分析连接建模 (MACM) 来定义从 VBM 数据中节点之间的结构协变的边缘,以及使用来自 BrainMap 的功能任务激活数据库定义功能协变的边缘。最后,我们使用 Pearson 的相关性分析来评估结构和功能协变模型之间的相似性和差异。

主要发现

我们的海马体 RtWB 元分析报告了 11 个关键区域的一致且显著的结构协变。随后的结构和功能 MACM 显示 HNM 节点之间具有很强的相关性,结构-功能协变相关性显著为 = 0.377(= 0.000049)。

意义

这种使用 VBM 和功能元分析技术研究网络协变的新方法允许识别与海马体相关的可推广的功能和结构异常模式。根据 NDH,这个框架在使用基于网络的测定法研究和预测空间疾病模式方面可能具有重大意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa29/5789756/d37c924d2cda/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验