Suppr超能文献

加权反馈迭代多幅相位恢复的图像对比度增强。

Enhancing imaging contrast via weighted feedback for iterative multi-image phase retrieval.

机构信息

Harbin Institute of Technology, Department of Automatic Test and Control, Harbin, China.

Harbin Institute of Technology, School of Life Science and Technology, Harbin, China.

出版信息

J Biomed Opt. 2018 Jan;23(1):1-10. doi: 10.1117/1.JBO.23.1.016015.

Abstract

Iterative phase retrieval (IPR) has developed into a feasible and simple computational method to retrieve a complex-valued sample. Due to coherent illumination, the reconstructed image quality is degraded by speckle noise arising from a laser. Accordingly, partially coherent illumination has been introduced to alleviate this restriction. We apply weighted feedback modality into multidistance and multiwavelength phase retrieval to realize high-contrast and fast imaging. In simulation, it is proved that IPR based on weighted feedback accelerates the convergence in partially coherent illumination and speckle illumination. In experiment, the resolution chart and biological specimen are reconstructed in lensless and lens-based systems, which also demonstrate the performance of weighted feedback. This work provides a simple and high-contrast imaging modality for IPR. Also, it facilitates compact and flexible experimental implementation for label-free imaging.

摘要

迭代相位恢复(IPR)已经发展成为一种可行且简单的计算方法,可以用来恢复复数值样本。由于相干照明,激光产生的散斑噪声会降低重构图像的质量。因此,部分相干照明已被引入以缓解这一限制。我们将加权反馈模式应用于多距离和多波长相位恢复中,以实现高对比度和快速成像。在模拟中,证明了基于加权反馈的 IPR 可以加速部分相干照明和散斑照明下的收敛速度。在实验中,在无透镜和透镜系统中重建了分辨率图和生物样本,这也证明了加权反馈的性能。这项工作为 IPR 提供了一种简单且高对比度的成像模式。此外,它还便于无标记成像的紧凑灵活的实验实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验