Suppr超能文献

基于加权反馈的多距离相息恢复快速收敛迭代方法。

A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval.

机构信息

Department of Automatic test and control, Harbin Institute of Technology, Harbin, 150080, China.

Department of Physics, Harbin Institute of Technology, Harbin, 150080, China.

出版信息

Sci Rep. 2018 Apr 24;8(1):6436. doi: 10.1038/s41598-018-24666-8.

Abstract

Multiple distance phase retrieval methods hold great promise for imaging and measurement due to their less expensive and compact setup. As one of their implementations, the amplitude-phase retrieval algorithm (APR) can achieve stable and high-accuracy reconstruction. However, it suffers from the slow convergence and the stagnant issue. Here we propose an iterative modality named as weighted feedback to solve this problem. With the plug-ins of single and double feedback, two augmented approaches, i.e. the APRSF and APRDF algorithms, are demonstrated to increase the convergence speed with a factor of two and three in experiments. Furthermore, the APRDF algorithm can extend the multiple distance phase retrieval to the partially coherent illumination and enhance the imaging contrast of both amplitude and phase, which actually relaxes the light source requirement. Thus the weighted feedback enables a fast-converging and high-contrast imaging scheme for the iterative phase retrieval.

摘要

多距离相位恢复方法由于其成本低、结构紧凑,在成像和测量方面具有很大的应用前景。作为其实现方式之一,幅度-相位恢复算法(APR)可以实现稳定和高精度的重建。然而,它存在收敛速度慢和停滞的问题。在这里,我们提出了一种迭代模式,称为加权反馈,以解决这个问题。通过单反馈和双反馈插件,演示了两种增强方法,即 APRSF 和 APRDF 算法,在实验中可以将收敛速度提高两倍和三倍。此外,APRDF 算法可以将多距离相位恢复扩展到部分相干照明,并提高幅度和相位的成像对比度,实际上放宽了对光源的要求。因此,加权反馈为迭代相位恢复提供了一种快速收敛和高对比度的成像方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d52/5915585/83dff5d6d329/41598_2018_24666_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验