Suppr超能文献

PLCγ1-PKCε-IPR1 信号在肺动脉平滑肌细胞缺氧诱导的钙反应中起重要作用。

PLCγ1-PKCε-IPR1 signaling plays an important role in hypoxia-induced calcium response in pulmonary artery smooth muscle cells.

机构信息

Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2018 May 1;314(5):L724-L735. doi: 10.1152/ajplung.00243.2017. Epub 2018 Feb 1.

Abstract

Hypoxia-induced pulmonary vasoconstriction (HPV) is attributed to an increase in intracellular Ca concentration ([Ca]) in pulmonary artery smooth muscle cells (PASMCs). We have reported that phospholipase C-γ1 (PLCγ1) plays a significant role in the hypoxia-induced increase in [Ca] in PASMCs and attendant HPV. In this study, we intended to determine molecular mechanisms for hypoxic Ca and contractile responses in PASMCs. Our data reveal that hypoxic vasoconstriction occurs in pulmonary arteries, but not in mesenteric arteries. Hypoxia caused a large increase in [Ca] in PASMCs, which is diminished by the PLC inhibitor U73122 and not by its inactive analog U73433 . Hypoxia augments PLCγ1-dependent inositol 1,4,5-trisphosphate (IP) generation. Exogenous ROS, hydrogen peroxide (HO), increases PLCγ1 phosphorylation at tyrosine-783 and IP production. IP receptor-1 (IPR1) knock-down remarkably diminishes hypoxia- or HO-induced increase in [Ca]. Hypoxia or HO increases the activity of IPRs, which is significantly reduced in protein kinase C-ε (PKCε) knockout PASMCs. A higher PLCγ1 expression, activity, and basal [Ca] are found in PASMCs, but not in mesenteric artery smooth muscle cells from mice exposed to chronic hypoxia (CH) for 21 days. CH enhances HO- and ATP-induced increase in [Ca] in PASMCs and PLC-dependent, norepinephrine-evoked pulmonary vasoconstriction. In conclusion, acute hypoxia uniquely causes ROS-dependent PLCγ1 activation, IP production, PKCε activation, IPR1 opening, Ca release, and contraction in mouse PASMCs; CH enhances PASM PLCγ1 expression, activity, and function, playing an essential role in pulmonary hypertension in mice.

摘要

低氧诱导的肺血管收缩(HPV)归因于肺动脉平滑肌细胞(PASMC)细胞内 Ca 浓度([Ca])的增加。我们已经报道,磷脂酶 C-γ1(PLCγ1)在低氧诱导的 PASMC 中[Ca]增加和随之而来的 HPV 中起重要作用。在这项研究中,我们旨在确定 PASMC 中低氧 Ca 和收缩反应的分子机制。我们的数据显示,低氧性血管收缩发生在肺血管中,但不在肠系膜血管中。低氧引起 PASMC 中[Ca]的大量增加,该增加被 PLC 抑制剂 U73122 而不是其非活性类似物 U73433 减弱。低氧增强 PLCγ1 依赖性肌醇 1,4,5-三磷酸(IP)生成。外源性 ROS、过氧化氢(HO)增加 PLCγ1 酪氨酸-783 磷酸化和 IP 生成。IP 受体-1(IPR1)敲低显着减弱低氧或 HO 诱导的[Ca]增加。低氧或 HO 增加 IPR 的活性,该活性在蛋白激酶 C-ε(PKCε)敲除 PASMC 中显著降低。在暴露于慢性低氧(CH)21 天的小鼠 PASMC 中发现 PLCγ1 表达、活性和基础[Ca]较高,但在肠系膜动脉平滑肌细胞中没有。CH 增强 HO 和 ATP 诱导的 PASMC 中[Ca]增加以及 PLC 依赖性、去甲肾上腺素诱发的肺血管收缩。总之,急性低氧独特地导致 ROS 依赖性 PLCγ1 激活、IP 产生、PKCε 激活、IPR1 开放、Ca 释放和小鼠 PASMC 收缩;CH 增强 PASM PLCγ1 的表达、活性和功能,在小鼠肺动脉高压中起重要作用。

相似文献

1
PLCγ1-PKCε-IPR1 signaling plays an important role in hypoxia-induced calcium response in pulmonary artery smooth muscle cells.
Am J Physiol Lung Cell Mol Physiol. 2018 May 1;314(5):L724-L735. doi: 10.1152/ajplung.00243.2017. Epub 2018 Feb 1.
2
Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.
Am J Physiol Lung Cell Mol Physiol. 2013 Feb 1;304(3):L143-51. doi: 10.1152/ajplung.00310.2012. Epub 2012 Nov 30.
3
Mitochondrial ROS-PKCepsilon signaling axis is uniquely involved in hypoxic increase in [Ca2+]i in pulmonary artery smooth muscle cells.
Biochem Biophys Res Commun. 2006 Dec 22;351(3):784-90. doi: 10.1016/j.bbrc.2006.10.116. Epub 2006 Oct 30.
5
Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells.
Free Radic Biol Med. 2008 Nov 1;45(9):1223-31. doi: 10.1016/j.freeradbiomed.2008.06.012. Epub 2008 Jun 21.
8
ROS-dependent signaling mechanisms for hypoxic Ca(2+) responses in pulmonary artery myocytes.
Antioxid Redox Signal. 2010 Mar 1;12(5):611-23. doi: 10.1089/ars.2009.2877.
9
Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells.
Circ Res. 2006 Oct 27;99(9):970-8. doi: 10.1161/01.RES.0000247068.75808.3f. Epub 2006 Sep 28.

引用本文的文献

1
NO modulation of AMP-activated protein kinase: A key player in regulating beef tenderness during post-mortem maturation.
Food Chem X. 2025 Feb 4;26:102255. doi: 10.1016/j.fochx.2025.102255. eCollection 2025 Feb.
3
Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells.
Cells. 2024 Nov 1;13(21):1807. doi: 10.3390/cells13211807.
4
Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC-CN-NFAT1 signaling in T2DM mice.
J Ginseng Res. 2023 May;47(3):458-468. doi: 10.1016/j.jgr.2022.12.006. Epub 2022 Dec 28.
5
Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension.
J Gen Physiol. 2023 Mar 6;155(3). doi: 10.1085/jgp.202213100. Epub 2023 Jan 10.
6
Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca signaling.
Physiol Rev. 2023 Jul 1;103(3):1827-1897. doi: 10.1152/physrev.00030.2021. Epub 2022 Nov 24.
7
Mitochondria-associated endoplasmic reticulum membranes and cardiac hypertrophy: Molecular mechanisms and therapeutic targets.
Front Cardiovasc Med. 2022 Oct 20;9:1015722. doi: 10.3389/fcvm.2022.1015722. eCollection 2022.
8
10
Important Functions and Molecular Mechanisms of Mitochondrial Redox Signaling in Pulmonary Hypertension.
Antioxidants (Basel). 2022 Feb 28;11(3):473. doi: 10.3390/antiox11030473.

本文引用的文献

1
The role of hypoxia in pulmonary vascular diseases: a perspective.
Am J Physiol Lung Cell Mol Physiol. 2013 Apr 1;304(7):L457-65. doi: 10.1152/ajplung.00335.2012. Epub 2013 Feb 1.
2
Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.
Am J Physiol Lung Cell Mol Physiol. 2013 Feb 1;304(3):L143-51. doi: 10.1152/ajplung.00310.2012. Epub 2012 Nov 30.
3
Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2.
Antioxid Redox Signal. 2013 May 10;18(14):1777-88. doi: 10.1089/ars.2012.4836. Epub 2012 Oct 18.
4
The Sin3a repressor complex is a master regulator of STAT transcriptional activity.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12058-63. doi: 10.1073/pnas.1206458109. Epub 2012 Jul 10.
5
Chronic hypoxia upregulates pulmonary arterial ASIC1: a novel mechanism of enhanced store-operated Ca2+ entry and receptor-dependent vasoconstriction.
Am J Physiol Cell Physiol. 2012 Mar 15;302(6):C931-40. doi: 10.1152/ajpcell.00332.2011. Epub 2011 Dec 28.
6
Biased agonism of the calcium-sensing receptor.
Cell Calcium. 2012 Feb;51(2):107-16. doi: 10.1016/j.ceca.2011.11.009. Epub 2011 Dec 20.
7
Intermittent hypoxia augments pulmonary vascular smooth muscle reactivity to NO: regulation by reactive oxygen species.
J Appl Physiol (1985). 2011 Oct;111(4):980-8. doi: 10.1152/japplphysiol.01286.2010. Epub 2011 Jul 14.
8
Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes.
Free Radic Biol Med. 2011 Apr 15;50(8):945-52. doi: 10.1016/j.freeradbiomed.2011.01.010. Epub 2011 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验