Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA.
J Appl Physiol (1985). 2011 Oct;111(4):980-8. doi: 10.1152/japplphysiol.01286.2010. Epub 2011 Jul 14.
Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension. IH causes oxidative stress that may limit bioavailability of the endothelium-derived vasodilator nitric oxide (NO) and thus contribute to this hypertensive response. We therefore hypothesized that increased vascular superoxide anion (O(2)(-)) generation reduces NO-dependent pulmonary vasodilation following IH. To test this hypothesis, we examined effects of the O(2)(-) scavenger tiron on vasodilatory responses to the endothelium-dependent vasodilator ionomycin and the NO donor S-nitroso-N-acetylpenicillamine in isolated lungs from hypocapnic-IH (H-IH; 3 min cycles of 5% O(2)/air flush, 7 h/day, 4 wk), eucapnic-IH (E-IH; cycles of 5% O(2), 5% CO(2)/air flush), and sham-treated (air/air cycled) rats. Next, we assessed effects of endogenous O(2)(-) on NO- and cGMP-dependent vasoreactivity and measured O(2)(-) levels using the fluorescent indicator dihydroethidium (DHE) in isolated, endothelium-disrupted small pulmonary arteries from each group. Both E-IH and H-IH augmented NO-dependent vasodilation; however, enhanced vascular smooth muscle (VSM) reactivity to NO following H-IH was masked by an effect of endogenous O(2)(-). Furthermore, H-IH and E-IH similarly increased VSM sensitivity to cGMP, but this response was independent of either O(2)(-) generation or altered arterial protein kinase G expression. Finally, both H-IH and E-IH increased arterial O(2)(-) levels, although this response was more pronounced following H-IH, and H-IH exposure resulted in greater protein tyrosine nitration indicative of increased NO scavenging by O(2)(-). We conclude that IH increases pulmonary VSM sensitivity to NO and cGMP. Furthermore, endogenous O(2)(-) limits NO-dependent vasodilation following H-IH through an apparent reduction in bioavailable NO.
间歇性低氧(IH)是由睡眠呼吸暂停引起的,可以导致肺动脉高压。IH 会引起氧化应激,可能会降低内皮衍生的血管舒张因子一氧化氮(NO)的生物利用度,从而导致这种高血压反应。因此,我们假设增加血管超氧阴离子(O(2)(-))的产生会减少 IH 后的 NO 依赖性肺血管舒张。为了验证这一假设,我们研究了 O(2)(-)清除剂 tiron 对低碳酸血症 IH(H-IH;7 h/d,4 周,5% O(2)/空气冲洗 3 min 循环)、常碳酸血症 IH(E-IH;5% O(2),5% CO(2)/空气冲洗循环)和假处理(空气/空气循环)大鼠离体肺中依赖内皮的血管扩张剂离子霉素和 NO 供体 S-亚硝基-N-乙酰青霉胺的血管舒张反应的影响。接下来,我们评估了内源性 O(2)(-)对 NO 和 cGMP 依赖性血管反应性的影响,并使用荧光指示剂二氢乙啶(DHE)测量每组分离的内皮破坏的小肺动脉中的 O(2)(-)水平。E-IH 和 H-IH 均增强了 NO 依赖性血管舒张;然而,IH 后内源性 O(2)(-)的作用掩盖了增强的血管平滑肌(VSM)对 NO 的反应性。此外,H-IH 和 E-IH 相似地增加了 VSM 对 cGMP 的敏感性,但这种反应独立于 O(2)(-)的产生或动脉蛋白激酶 G 表达的改变。最后,H-IH 和 E-IH 均增加了动脉 O(2)(-)水平,尽管 IH 后反应更明显,并且 IH 暴露导致更多的蛋白质酪氨酸硝化,表明 O(2)(-)对 NO 的清除作用增加。我们的结论是,IH 增加了肺 VSM 对 NO 和 cGMP 的敏感性。此外,内源性 O(2)(-) 通过明显降低生物可利用的 NO 来限制 IH 后依赖 NO 的血管舒张。