Suppr超能文献

用于氢化催化剂原位等离子体增强拉曼光谱的热稳定TiO和SiO壳层隔离金纳米颗粒

Thermally Stable TiO - and SiO -Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts.

作者信息

Hartman Thomas, Weckhuysen Bert M

机构信息

Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.

出版信息

Chemistry. 2018 Mar 12;24(15):3733-3741. doi: 10.1002/chem.201704370. Epub 2018 Feb 1.

Abstract

Raman spectroscopy is known as a powerful technique for solid catalyst characterization as it provides vibrational fingerprints of (metal) oxides, reactants, and products. It can even become a strong surface-sensitive technique by implementing shell-isolated surface-enhanced Raman spectroscopy (SHINERS). Au@TiO and Au@SiO shell-isolated nanoparticles (SHINs) of various sizes were therefore prepared for the purpose of studying heterogeneous catalysis and the effect of metal oxide coating. Both SiO - and TiO -SHINs are effective SHINERS substrates and thermally stable up to 400 °C. Nano-sized Ru and Rh hydrogenation catalysts were assembled over the SHINs by wet impregnation of aqueous RuCl and RhCl . The substrates were implemented to study CO adsorption and hydrogenation under in situ conditions at various temperatures to illustrate the differences between catalysts and shell materials with SHINERS. This work demonstrates the potential of SHINS for in situ characterization studies in a wide range of catalytic reactions.

摘要

拉曼光谱法是一种用于固体催化剂表征的强大技术,因为它能提供(金属)氧化物、反应物和产物的振动指纹图谱。通过实施壳层隔离表面增强拉曼光谱法(SHINERS),它甚至可以成为一种强大的表面敏感技术。因此,制备了各种尺寸的Au@TiO和Au@SiO壳层隔离纳米颗粒(SHINs),用于研究多相催化以及金属氧化物涂层的影响。SiO -和TiO -SHINs都是有效的SHINERS底物,并且在高达400 °C的温度下具有热稳定性。通过用RuCl和RhCl的水溶液进行湿浸渍,在SHINs上组装了纳米级的Ru和Rh加氢催化剂。这些底物用于研究在不同温度下原位条件下的CO吸附和加氢,以说明使用SHINERS时催化剂和壳层材料之间的差异。这项工作证明了SHINs在广泛的催化反应原位表征研究中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39f2/5873377/2b4b6c0b3e6c/CHEM-24-3733-g001.jpg

相似文献

2
In Situ Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Nickel-Catalyzed Hydrogenation Reactions.
Chemphyschem. 2020 Apr 2;21(7):625-632. doi: 10.1002/cphc.201901162. Epub 2020 Feb 4.
3
Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.
J Am Chem Soc. 2017 Aug 2;139(30):10339-10346. doi: 10.1021/jacs.7b04011. Epub 2017 Jul 25.
4
Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
Acc Chem Res. 2020 Apr 21;53(4):729-739. doi: 10.1021/acs.accounts.9b00545. Epub 2020 Feb 7.
6
Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy.
Nat Protoc. 2013 Jan;8(1):52-65. doi: 10.1038/nprot.2012.141. Epub 2012 Dec 13.
7
Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy.
Front Chem. 2019 Jun 4;7:410. doi: 10.3389/fchem.2019.00410. eCollection 2019.
8
Extending Surface-Enhanced Raman Spectroscopy to Liquids Using Shell-Isolated Plasmonic Superstructures.
Chemistry. 2019 Dec 10;25(69):15772-15778. doi: 10.1002/chem.201903204. Epub 2019 Oct 15.
9
Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Oct 15;240:118560. doi: 10.1016/j.saa.2020.118560. Epub 2020 May 29.
10
Long-Life and pH-Stable SnO-Coated Au Nanoparticles for SHINERS.
J Phys Chem C Nanomater Interfaces. 2022 Jul 28;126(29):12074-12081. doi: 10.1021/acs.jpcc.2c02432. Epub 2022 Jul 13.

引用本文的文献

1
Deep learning-based single-shot computational spectrometer using multilayer thin films.
Sci Rep. 2025 Jul 1;15(1):21232. doi: 10.1038/s41598-025-06691-6.
2
Impact of Surface Enhanced Raman Spectroscopy in Catalysis.
ACS Nano. 2024 Oct 29;18(43):29337-29379. doi: 10.1021/acsnano.4c06192. Epub 2024 Oct 14.
4
The concept of active site in heterogeneous catalysis.
Nat Rev Chem. 2022 Feb;6(2):89-111. doi: 10.1038/s41570-021-00340-y. Epub 2022 Jan 6.
5
Silica Shell Thickness-Dependent Fluorescence Properties of SiO@Ag@SiO@QDs Nanocomposites.
Int J Mol Sci. 2022 Sep 2;23(17):10041. doi: 10.3390/ijms231710041.
6
Long-Life and pH-Stable SnO-Coated Au Nanoparticles for SHINERS.
J Phys Chem C Nanomater Interfaces. 2022 Jul 28;126(29):12074-12081. doi: 10.1021/acs.jpcc.2c02432. Epub 2022 Jul 13.
7
Development of Highly Sensitive Raman Spectroscopy for Subnano and Single-Atom Detection.
Molecules. 2021 Aug 23;26(16):5099. doi: 10.3390/molecules26165099.
8
Oxygen Vacancy Dynamics in Highly Crystalline Zinc Oxide Film Investigated by PIERS Effect.
Materials (Basel). 2021 Aug 7;14(16):4423. doi: 10.3390/ma14164423.
9
Operando Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of the NO Reduction Reaction over Rhodium-Based Catalysts.
Chemphyschem. 2021 Aug 4;22(15):1595-1602. doi: 10.1002/cphc.202100375. Epub 2021 Jul 7.
10
Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications.
ACS Cent Sci. 2020 Nov 25;6(11):1916-1937. doi: 10.1021/acscentsci.0c01046. Epub 2020 Oct 21.

本文引用的文献

1
Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.
J Am Chem Soc. 2017 Aug 2;139(30):10339-10346. doi: 10.1021/jacs.7b04011. Epub 2017 Jul 25.
2
Electromagnetic theories of surface-enhanced Raman spectroscopy.
Chem Soc Rev. 2017 Jul 7;46(13):4042-4076. doi: 10.1039/c7cs00238f. Epub 2017 Jun 29.
4
Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.
Chem Rev. 2017 Apr 12;117(7):5002-5069. doi: 10.1021/acs.chemrev.6b00596. Epub 2017 Mar 8.
5
Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis.
J Phys Chem Lett. 2016 Apr 21;7(8):1570-84. doi: 10.1021/acs.jpclett.6b00147. Epub 2016 Apr 14.
6
Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy.
J Am Chem Soc. 2016 Apr 6;138(13):4673-84. doi: 10.1021/jacs.6b01865. Epub 2016 Mar 25.
7
Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.
J Phys Chem Lett. 2016 Feb 18;7(4):666-75. doi: 10.1021/acs.jpclett.5b02393. Epub 2016 Feb 1.
8
Surface- and Tip-Enhanced Raman Spectroscopy as Operando Probes for Monitoring and Understanding Heterogeneous Catalysis.
Catal Letters. 2015;145(1):40-57. doi: 10.1007/s10562-014-1420-4. Epub 2014 Nov 16.
9
Separation of time-resolved phenomena in surface-enhanced Raman scattering of the photocatalytic reduction of p-nitrothiophenol.
Chemphyschem. 2015 Feb 23;16(3):547-54. doi: 10.1002/cphc.201402709. Epub 2014 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验