Suppr超能文献

在观测数据库网络中推断妊娠事件及结局。

Inferring pregnancy episodes and outcomes within a network of observational databases.

作者信息

Matcho Amy, Ryan Patrick, Fife Daniel, Gifkins Dina, Knoll Chris, Friedman Andrew

机构信息

Epidemiology Analytics, Janssen Research and Development, LLC, Raritan, New Jersey, United States of America.

Epidemiology, Janssen Research and Development, LLC, Titusville, New Jersey, United States of America.

出版信息

PLoS One. 2018 Feb 1;13(2):e0192033. doi: 10.1371/journal.pone.0192033. eCollection 2018.

Abstract

Administrative claims and electronic health records are valuable resources for evaluating pharmaceutical effects during pregnancy. However, direct measures of gestational age are generally not available. Establishing a reliable approach to infer the duration and outcome of a pregnancy could improve pharmacovigilance activities. We developed and applied an algorithm to define pregnancy episodes in four observational databases: three US-based claims databases: Truven MarketScan® Commercial Claims and Encounters (CCAE), Truven MarketScan® Multi-state Medicaid (MDCD), and the Optum ClinFormatics® (Optum) database and one non-US database, the United Kingdom (UK) based Clinical Practice Research Datalink (CPRD). Pregnancy outcomes were classified as live births, stillbirths, abortions and ectopic pregnancies. Start dates were estimated using a derived hierarchy of available pregnancy markers, including records such as last menstrual period and nuchal ultrasound dates. Validation included clinical adjudication of 700 electronic Optum and CPRD pregnancy episode profiles to assess the operating characteristics of the algorithm, and a comparison of the algorithm's Optum pregnancy start estimates to starts based on dates of assisted conception procedures. Distributions of pregnancy outcome types were similar across all four data sources and pregnancy episode lengths found were as expected for all outcomes, excepting term lengths in episodes that used amenorrhea and urine pregnancy tests for start estimation. Validation survey results found highest agreement between reviewer chosen and algorithm operating characteristics for questions assessing pregnancy status and accuracy of outcome category with 99-100% agreement for Optum and CPRD. Outcome date agreement within seven days in either direction ranged from 95-100%, while start date agreement within seven days in either direction ranged from 90-97%. In Optum validation sensitivity analysis, a total of 73% of algorithm estimated starts for live births were in agreement with fertility procedure estimated starts within two weeks in either direction; ectopic pregnancy 77%, stillbirth 47%, and abortion 36%. An algorithm to infer live birth and ectopic pregnancy episodes and outcomes can be applied to multiple observational databases with acceptable accuracy for further epidemiologic research. Less accuracy was found for start date estimations in stillbirth and abortion outcomes in our sensitivity analysis, which may be expected given the nature of the outcomes.

摘要

行政索赔数据和电子健康记录是评估孕期药物疗效的宝贵资源。然而,通常无法直接获取孕周的测量值。建立一种可靠的方法来推断妊娠时长和结局,有助于改善药物警戒活动。我们开发并应用了一种算法,用于在四个观察性数据库中定义妊娠事件:三个美国索赔数据库,即Truven MarketScan®商业索赔与诊疗记录数据库(CCAE)、Truven MarketScan®多州医疗补助数据库(MDCD)以及Optum ClinFormatics®(Optum)数据库,还有一个非美国数据库,即基于英国的临床实践研究数据链(CPRD)。妊娠结局分为活产、死产、流产和异位妊娠。起始日期通过利用可得妊娠标志物的衍生层级进行估算,这些标志物包括末次月经日期和颈部超声检查日期等记录。验证工作包括对700份Optum和CPRD电子妊娠事件记录进行临床判定,以评估该算法的运行特征,并将算法对Optum妊娠起始日期的估算与基于辅助受孕程序日期得出的起始日期进行比较。在所有四个数据源中,妊娠结局类型的分布相似,除了那些使用闭经和尿妊娠试验来估算起始日期的事件中的足月时长外,所有结局的妊娠事件长度均符合预期。验证调查结果显示,在评估妊娠状态和结局类别准确性的问题上,评审人员选定的结果与算法运行特征之间的一致性最高,Optum和CPRD的一致性为99 - 100%。结局日期在任一方向上七天内的一致性范围为95 - 100%,而起始日期在任一方向上七天内的一致性范围为90 - 97%。在Optum验证敏感性分析中,算法估算的活产起始日期中,共有73%在任一方向上与生育程序估算的起始日期在两周内一致;异位妊娠为77%,死产为47%,流产为36%。一种用于推断活产和异位妊娠事件及结局的算法可以应用于多个观察性数据库,其准确性可接受,适用于进一步的流行病学研究。在我们的敏感性分析中,死产和流产结局的起始日期估算准确性较低,鉴于这些结局的性质,这是可以预料的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b7/5794136/10fc74bdc0c7/pone.0192033.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验