Suppr超能文献

开发一种算法来识别医疗保健索赔数据库中的妊娠事件和相关结局:在法国 490 万例孕妇中应用抗癫痫药物的情况。

Development of an algorithm to identify pregnancy episodes and related outcomes in health care claims databases: An application to antiepileptic drug use in 4.9 million pregnant women in France.

机构信息

Department of Studies in Public Health, French National Health Insurance (CNAMTS), Paris, France.

Université de Lorraine, université Paris-Descartes, Apemac, EA 4360, Nancy, France.

出版信息

Pharmacoepidemiol Drug Saf. 2018 Jul;27(7):763-770. doi: 10.1002/pds.4556. Epub 2018 May 15.

Abstract

PURPOSE

Access to claims databases provides an opportunity to study medication use and safety during pregnancy. We developed an algorithm to identify pregnancy episodes in the French health care databases and applied it to study antiepileptic drug (AED) use during pregnancy between 2007 and 2014.

METHODS

The algorithm searched the French health care databases for discharge diagnoses and medical procedures indicative of completion of a pregnancy. To differentiate claims associated with separate pregnancies, an interval of at least 28 weeks was required between 2 consecutive pregnancies resulting in a birth and 6 weeks for terminations of pregnancy. Pregnancy outcomes were categorized into live births, stillbirths, elective abortions, therapeutic abortions, spontaneous abortions, and ectopic pregnancies. Outcome dates and gestational ages were used to calculate pregnancy start dates.

RESULTS

According to our algorithm, live birth was the most common pregnancy outcome (73.9%), followed by elective abortion (17.2%), spontaneous abortion (4.2%), ectopic pregnancy (1.1%), therapeutic abortion (1.0%), and stillbirth (0.4%). These results were globally consistent with French official data. Among 7 559 701 pregnancies starting between 2007 and 2014, corresponding to 4 900 139 women, 6.7 per 1000 pregnancies were exposed to an AED. The number of pregnancies exposed to older AEDs, comprising the most teratogenic AEDs, decreased throughout the study period (-69.4%), while the use of newer AEDs increased (+73.4%).

CONCLUSIONS

We have developed an algorithm that allows identification of a large number of pregnancies and all types of pregnancy outcomes. Pregnancy outcome and start dates were accurately identified, and maternal data could be linked to neonatal data.

摘要

目的

获取理赔数据库为研究妊娠期间药物使用和安全性提供了机会。我们开发了一种算法来识别法国医疗保健数据库中的妊娠事件,并将其应用于 2007 年至 2014 年期间抗癫痫药物(AED)在妊娠期间的使用情况研究。

方法

该算法搜索法国医疗保健数据库中表明妊娠完成的出院诊断和医疗程序。为了区分与单独妊娠相关的索赔,要求连续两次妊娠导致分娩的间隔至少为 28 周,而终止妊娠的间隔为 6 周。妊娠结局分为活产、死产、选择性流产、治疗性流产、自然流产和异位妊娠。结局日期和胎龄用于计算妊娠开始日期。

结果

根据我们的算法,活产是最常见的妊娠结局(73.9%),其次是选择性流产(17.2%)、自然流产(4.2%)、异位妊娠(1.1%)、治疗性流产(1.0%)和死产(0.4%)。这些结果与法国官方数据总体一致。在 2007 年至 2014 年间开始的 7559701 例妊娠中,对应于 4900139 名妇女,6.7/1000 例妊娠暴露于 AED。暴露于旧 AED 的妊娠数量(包括最致畸性的 AED)在整个研究期间减少了(-69.4%),而新型 AED 的使用增加了(+73.4%)。

结论

我们开发了一种算法,可以识别大量妊娠和所有类型的妊娠结局。妊娠结局和开始日期被准确识别,并且可以将产妇数据与新生儿数据相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c29c/6055607/58e64e3d205c/PDS-27-763-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验