Suppr超能文献

利用商业保险理赔数据建立妊娠队列:评估住院与门诊理赔中识别出的分娩情况

Development of a Pregnancy Cohort in Commercial Insurance Claims Data: Evaluation of Deliveries Identified From Inpatient Versus Outpatient Claims.

作者信息

Kahrs Jacob C, Nickel Katelin B, Wood Mollie E, Dublin Sascha, Durkin Michael J, Osmundson Sarah S, Stwalley Dustin, Suarez Elizabeth A, Butler Anne M

机构信息

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2025 Mar;34(3):e70115. doi: 10.1002/pds.70115.

Abstract

PURPOSE

Studies using insurance claims data to identify pregnancies are rarely able to directly assess the validity of the pregnancy/delivery. Inpatient versus outpatient delivery claims may provide different levels of evidence, but more stringent requirements could result in exclusion of true pregnancies. We identified delivery codes from the inpatient and outpatient settings and examined possible confirmatory evidence suggesting that a delivery truly occurred.

METHODS

Using a US commercial insurance database (2006-2021), we identified potential pregnancies by presence of delivery claims from a provider and/or facility. We classified deliveries as inpatient (claim date during inpatient admission) or outpatient (claim date not during inpatient admission). We identified possible confirmatory evidence for each delivery including: (1) Presence of both provider and facility delivery codes; (2) presence of both diagnosis and procedure delivery codes; (3) labor and delivery revenue codes; (4) gestational age diagnosis codes; (5) pregnancy-related care codes; (6) linkage to an infant claim; and (7) infant insurance enrollment and linkage to a birthing parent. We quantified the proportion of deliveries with confirmatory evidence by delivery setting. Among deliveries with ≥ 1 piece of confirmatory evidence, we compared patient characteristics by apparent delivery setting.

RESULTS

Among 4 084 474 delivery episodes, 96.4% were classified as inpatient and 3.6% outpatient. 99.9% of inpatient and 94.0% of outpatient deliveries had ≥ 1 piece of confirmatory evidence. Pregnancy-related care codes were the most common type of confirmatory evidence (99.0% inpatient, 85.7% outpatient). Deliveries classified as inpatient occurred among patients who were older and more clinically complex (i.e., more pregnancy complications, chronic diseases, and prescription medications).

CONCLUSIONS

The vast majority of deliveries had confirmatory evidence regardless of apparent setting. Patient characteristics differed by delivery setting. Inclusion of apparent outpatient deliveries may increase the sample size of the study population and improve the generalizability of study results.

摘要

目的

利用保险理赔数据识别妊娠情况的研究很少能够直接评估妊娠/分娩的有效性。住院分娩与门诊分娩理赔可能提供不同程度的证据,但更严格的要求可能导致排除真正的妊娠情况。我们从住院和门诊环境中识别出分娩编码,并检查了表明确实发生分娩的可能确证证据。

方法

使用美国商业保险数据库(2006 - 2021年),我们通过提供者和/或机构的分娩理赔记录来识别潜在妊娠情况。我们将分娩分类为住院分娩(理赔日期在住院期间)或门诊分娩(理赔日期不在住院期间)。我们为每次分娩识别出可能的确证证据,包括:(1)同时存在提供者和机构的分娩编码;(2)同时存在诊断和手术分娩编码;(3) labor and delivery revenue codes(这个表述不太准确,可能是“分娩收入编码”之类的意思,但不确定,暂按原文);(4)孕周诊断编码;(5)与妊娠相关的护理编码;(6)与婴儿理赔的关联;以及(7)婴儿保险登记和与分娩父母的关联。我们按分娩环境量化了有确证证据的分娩比例。在有≥1条确证证据的分娩中,我们按明显的分娩环境比较了患者特征。

结果

在4084474次分娩事件中,96.4%被分类为住院分娩,3.6%为门诊分娩。99.9%的住院分娩和94.0%的门诊分娩有≥1条确证证据。与妊娠相关的护理编码是最常见的确证证据类型(住院分娩中占99.0%,门诊分娩中占85.7%)。被分类为住院分娩的患者年龄较大且临床情况更复杂(即有更多妊娠并发症、慢性病和处方药)。

结论

无论明显的分娩环境如何,绝大多数分娩都有确证证据。患者特征因分娩环境而异。纳入明显的门诊分娩可能会增加研究人群的样本量,并提高研究结果的普遍性。

相似文献

9
Out-of-network bills among privately insured patients undergoing hysterectomy.私营保险患者接受子宫切除术的网络外账单。
Am J Obstet Gynecol. 2022 Apr;226(4):543.e1-543.e45. doi: 10.1016/j.ajog.2021.11.027. Epub 2021 Nov 11.

本文引用的文献

4
Validation of claims-based algorithms to identify non-live birth outcomes.基于申报算法验证非活产结局的识别。
Pharmacoepidemiol Drug Saf. 2023 Apr;32(4):468-474. doi: 10.1002/pds.5574. Epub 2022 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验