Suppr超能文献

直接观察感染宿主细胞内衣原体效应蛋白的表达和定位。

Direct visualization of the expression and localization of chlamydial effector proteins within infected host cells.

机构信息

Program in Infectious Diseases, School of Public Health, University of California, 51 Koshland Hall, Berkeley, CA 94720, USA.

Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican St Seattle, WA 98109, USA.

出版信息

Pathog Dis. 2018 Mar 1;76(2). doi: 10.1093/femspd/fty011.

Abstract

Chlamydia secrete into host cells a diverse array of effector proteins, but progress in characterizing the spatiotemporal localization of these proteins has been hindered by a paucity of genetic approaches in Chlamydia and also by the challenge of studying these proteins within the live cellular environment. We adapted a split-green fluorescent protein (GFP) system for use in Chlamydia to label chlamydial effector proteins and track their localization in host cells under native environment. The efficacy of this system was demonstrated by detecting several known Chlamydia proteins including IncA, CT005 and CT694. We further used this approach to detect two chlamydial deubiquitinases (CT867 and CT868) within live cells during the infection. CT868 localized only to the inclusion membrane at early and late developmental stages. CT867 localized to the chlamydial inclusion membrane at an early developmental stage and was concomitantly localized to the host plasma membrane at a late stage during the infection. These data suggest that chlamydial deubiquitinase play important roles for chlamydial pathogenesis by targeting proteins at both the plasma membrane and the chlamydial inclusion membrane. The split-GFP technology was demonstrated to be a robust and efficient approach to identify the secretion and cellular localization of important chlamydial virulence factors.

摘要

沙眼衣原体向宿主细胞分泌多种效应蛋白,但由于在沙眼衣原体中缺乏遗传方法,以及在活细胞环境中研究这些蛋白的挑战性,在描述这些蛋白的时空定位方面的进展受到了阻碍。我们改编了一种分裂绿色荧光蛋白(GFP)系统,用于标记沙眼衣原体效应蛋白,并在天然环境下追踪它们在宿主细胞中的定位。该系统的功效通过检测几种已知的沙眼衣原体蛋白,包括 IncA、CT005 和 CT694 得到了证明。我们进一步在感染过程中使用这种方法在活细胞中检测到两种衣原体去泛素化酶(CT867 和 CT868)。CT868 仅在早期和晚期发育阶段定位于包涵体膜。CT867 在早期发育阶段定位于衣原体包涵体膜,在感染后期同时定位于宿主质膜。这些数据表明,衣原体去泛素化酶通过靶向质膜和衣原体包涵体膜上的蛋白,在衣原体发病机制中发挥重要作用。分裂 GFP 技术被证明是一种强大而有效的方法,可用于鉴定重要的衣原体毒力因子的分泌和细胞定位。

相似文献

2
Localization and characterization of GTP-binding protein CT703 in the Chlamydia trachomatis-Infected cells.
Curr Microbiol. 2011 Feb;62(2):465-71. doi: 10.1007/s00284-010-9730-2. Epub 2010 Aug 20.
3
Development of a Proximity Labeling System to Map the Inclusion Membrane.
Front Cell Infect Microbiol. 2017 Feb 15;7:40. doi: 10.3389/fcimb.2017.00040. eCollection 2017.
4
The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner.
Infect Immun. 2007 Feb;75(2):781-91. doi: 10.1128/IAI.01447-06. Epub 2006 Nov 13.
6
Developmental stage oxidoreductive states of Chlamydia and infected host cells.
mBio. 2014 Oct 28;5(6):e01924. doi: 10.1128/mBio.01924-14.
7
SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion.
Cell Microbiol. 2007 Dec;9(12):2839-55. doi: 10.1111/j.1462-5822.2007.01000.x. Epub 2007 Aug 13.
8
Localization and characterization of the hypothetical protein CT440 in Chlamydia trachomatis-infected cells.
Sci China Life Sci. 2011 Nov;54(11):1048-54. doi: 10.1007/s11427-011-4243-1. Epub 2011 Dec 16.

引用本文的文献

2
Experimental Approaches to Visualize Effector Protein Translocation During Host-Pathogen Interactions.
Bioessays. 2025 Apr;47(4):e202400188. doi: 10.1002/bies.202400188. Epub 2025 Mar 13.
5
The effector CpoS modulates the inclusion microenvironment and restricts the interferon response by acting on Rab35.
mBio. 2023 Aug 31;14(4):e0319022. doi: 10.1128/mbio.03190-22. Epub 2023 Aug 2.
6
Identification and Preliminary Characterization of Novel Type III Secreted Effector Proteins in Chlamydia trachomatis.
Infect Immun. 2023 Jul 18;91(7):e0049122. doi: 10.1128/iai.00491-22. Epub 2023 Jun 22.
7
The Inclusion Membrane Protein CTL0390 Mediates Host Cell Exit via Lysis through STING Activation.
Infect Immun. 2022 Jun 16;90(6):e0019022. doi: 10.1128/iai.00190-22. Epub 2022 May 19.
8
The growing repertoire of genetic tools for dissecting chlamydial pathogenesis.
Pathog Dis. 2021 May 11;79(5). doi: 10.1093/femspd/ftab025.

本文引用的文献

3
Chlamydia cell biology and pathogenesis.
Nat Rev Microbiol. 2016 Jun;14(6):385-400. doi: 10.1038/nrmicro.2016.30. Epub 2016 Apr 25.
4
Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis.
Infect Immun. 2015 Dec;83(12):4710-8. doi: 10.1128/IAI.01075-15. Epub 2015 Sep 28.
5
Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection.
Cell Host Microbe. 2015 Jul 8;18(1):109-21. doi: 10.1016/j.chom.2015.06.004. Epub 2015 Jun 25.
6
The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.
PLoS Pathog. 2015 Jun 4;11(6):e1004883. doi: 10.1371/journal.ppat.1004883. eCollection 2015 Jun.
8
Regulation of fc receptor endocytic trafficking by ubiquitination.
Front Immunol. 2014 Sep 18;5:449. doi: 10.3389/fimmu.2014.00449. eCollection 2014.
9
Exploitation of the host ubiquitin system by human bacterial pathogens.
Nat Rev Microbiol. 2014 Jun;12(6):399-413. doi: 10.1038/nrmicro3259. Epub 2014 May 7.
10
Expression and targeting of secreted proteins from Chlamydia trachomatis.
J Bacteriol. 2014 Apr;196(7):1325-34. doi: 10.1128/JB.01290-13. Epub 2014 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验