Lang L, Couso R, Kornfeld S
J Biol Chem. 1986 May 15;261(14):6320-5.
UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase activity has been identified in both Acanthamoeba castellani and Dictyostelium discoideum. Each of these activities exhibits a different in vitro specificity toward various purified glycoproteins. The N-acetylglucosaminyl-phosphotransferase of A. castellani is very similar to the mammalian enzyme in that it phosphorylates the lysosomal enzymes cathepsin D and uteroferrin much more efficiently than nonlysosomal glycoproteins and appears to recognize a determinant on the protein portion of these good acceptors. In contrast the D. discoideum enzyme cannot utilize cathepsin D as a good substrate and, although it phosphorylates uteroferrin efficiently, it does not recognize the protein portion of this acceptor. The oligosaccharide of uteroferrin appears to assume a different conformation than the oligosaccharides of other glycoproteins and glycopeptides, as evidenced by its enhanced sensitivity to mannosidase digestion. This conformation, presumably induced by some interaction with the underlying protein, may be responsible for the specific phosphorylation of uteroferrin by the N-acetylglucosaminylphosphotransferase of D. discoideum.