Suppr超能文献

Identification of an N-acetylglucosaminyltransferase in Dictyostelium discoideum that transfers an "intersecting" N-acetylglucosamine residue to high mannose oligosaccharides.

作者信息

Sharkey D J, Kornfeld R

机构信息

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

出版信息

J Biol Chem. 1989 Jun 25;264(18):10411-9.

PMID:2525124
Abstract

Glycoproteins synthesized by the cellular slime mold Dictyostelium discoideum have been shown to contain asparagine-linked high-mannose oligosaccharides which have an N-acetylglucosamine group in a novel intersecting position (attached beta 1-4 to the mannose linked alpha 1-6 to the core mannose). We have used crude membrane preparations from vegetative D. discoideum (strain M4) to characterize the enzyme activity responsible for catalyzing the transfer of GlcNAc to the intersecting position of high-mannose oligosaccharides. UDP-GlcNAc:oligosaccharide beta-N-acetylglucosaminyltransferase activity in these preparations attaches GlcNAc to the mannose residue-linked alpha 1-6 to the beta-linked core mannose of the following Man9GlcNAc oligosaccharide as shown by the arrow. (formula; see text) It will also attach GlcNAc to the same intersecting position and/or to the bisecting position (beta-linked core mannose) of the following Man5GlcNAc oligosaccharide. (formula; see text) An analysis of the pH profiles, effects of heat denaturation, and substrate inhibitions on the addition of GlcNAc to either the intersecting or bisecting position of this Man5GlcNAc oligosaccharide indicates that a single enzyme activity is responsible for transferring GlcNAc to both positions. Various oligosaccharides were assayed to determine the substrate specificity of the transferase activity. These data indicate that both the mannose-attached alpha 1-3 and the mannose-attached alpha 1-6 to the mannose receiving the GlcNAc play a critical role in substrate suitability; absence of the alpha 1-6 mannose results in at least a 90% decrease in activity, while absence of the alpha 1-3 mannose results in a completely inactive substrate. This suggests that the minimal substrate is the disaccharide Man alpha 1-3Man.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验