Suppr超能文献

用于现代耳机技术算法的听觉线索的仪器质量预测和分析。

Instrumental Quality Predictions and Analysis of Auditory Cues for Algorithms in Modern Headphone Technology.

机构信息

Department of Medical Physics and Acoustics and Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.

出版信息

Trends Hear. 2021 Jan-Dec;25:23312165211001219. doi: 10.1177/23312165211001219.

Abstract

Smart headphones or hearables use different types of algorithms such as noise cancelation, feedback suppression, and sound pressure equalization to eliminate undesired sound sources or to achieve acoustical transparency. Such signal processing strategies might alter the spectral composition or interaural differences of the original sound, which might be perceived by listeners as monaural or binaural distortions and thus degrade audio quality. To evaluate the perceptual impact of these distortions, subjective quality ratings can be used, but these are time consuming and costly. Auditory-inspired instrumental quality measures can be applied with less effort and may also be helpful in identifying whether the distortions impair the auditory representation of monaural or binaural cues. Therefore, the goals of this study were (a) to assess the applicability of various monaural and binaural audio quality models to distortions typically occurring in hearables and (b) to examine the effect of those distortions on the auditory representation of spectral, temporal, and binaural cues. Results showed that the signal processing algorithms considered in this study mainly impaired (monaural) spectral cues. Consequently, monaural audio quality models that capture spectral distortions achieved the best prediction performance. A recent audio quality model that predicts monaural and binaural aspects of quality was revised based on parts of the current data involving binaural audio quality aspects, leading to improved overall performance indicated by a mean Pearson linear correlation of 0.89 between obtained and predicted ratings.

摘要

智能耳机或可听设备使用不同类型的算法,如噪声消除、反馈抑制和声压均衡,以消除不需要的声源或实现声学透明。这种信号处理策略可能会改变原始声音的频谱组成或两耳间差异,听众可能会将其感知为单声道或立体声失真,从而降低音频质量。为了评估这些失真的感知影响,可以使用主观质量评分,但这些评分既耗时又昂贵。受听觉启发的仪器质量测量可以更轻松地应用,并且还可以帮助确定失真是否会损害单声道或立体声线索的听觉表示。因此,本研究的目的是(a)评估各种单声道和立体声音频质量模型在可听设备中常见失真情况下的适用性,以及(b)研究这些失真对频谱、时间和立体声线索的听觉表示的影响。结果表明,本研究中考虑的信号处理算法主要损害了(单声道)频谱线索。因此,能够捕捉频谱失真的单声道音频质量模型取得了最佳的预测性能。最近的一个预测单声道和立体声质量方面的音频质量模型基于涉及立体声音频质量方面的部分当前数据进行了修订,这导致整体性能得到了提高,这表现为获得的和预测的评分之间的平均皮尔逊线性相关系数为 0.89。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43b/7983238/919bbb03ab66/10.1177_23312165211001219-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验