Suppr超能文献

2001年至2010年印度加尔各答临床分离株中多重耐药性的分子分析:整合子、质粒和拓扑异构酶突变的作用

Molecular analysis of multidrug resistance in clinical isolates of spp. from 2001-2010 in Kolkata, India: role of integrons, plasmids, and topoisomerase mutations.

作者信息

Rajpara Neha, Nair Mrinalini, Chowdhury Goutam, Mukhopadhyay Asish K, Ramamurthy Thandavarayan, Niyogi Swapan Kumar, Bhardwaj Ashima Kushwaha

机构信息

Department of Human Health and Diseases, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar.

Department of Microbiology and Biotechnology Centre, Maharaja Sayaji Rao University of Baroda, Vadodara, Gujarat.

出版信息

Infect Drug Resist. 2018 Jan 12;11:87-102. doi: 10.2147/IDR.S148726. eCollection 2018.

Abstract

To understand the genetic basis of high drug resistance in , 95 clinical isolates of spp. (2001-2010) were obtained from the Infectious Diseases Hospital, Kolkata, India. Ninety-three isolates were resistant to three or more antibiotics. Resistance to nalidixic acid, trimethoprim, streptomycin, and co-trimoxazole was most common in this population. Dendrogram analysis showed that strains were more clonally related when compared to the other species. The role of mobile genetic elements and chromosome-borne resistance factors was analyzed in detail. Integron analysis indicated the preponderance of class 2 and atypical class 1 integrons in that population. Typical class 1 integron was present in only one isolate and harbored trimethoprim resistance-encoding gene , while atypical class 1 integrons harbored or gene cassettes responsible for resistance to trimethoprim, aminoglycosides, and β-lactams. Class 2 integrons harbored either or gene cassettes. Most importantly, a novel gene cassette array was found in class 2 integron of NK4846. Many of the resistance traits for antibiotics such as trimethoprim, co-trimoxazole, kanamycin, ampicillin, and tetracycline were transferred from parent isolates to recipient during conjugation, establishing the role of plasmids in horizontal transfer of resistance genes. Multiple mutations such as S→I, S→L, and D→G/N/Y in quinolone resistance determining regions of topoisomerases from the representative quinolone-resistant isolates could explain the spectrum of minimal inhibitory concentration values for various quinolones. To the best of our knowledge, this is the first comprehensive report that describes the contribution of mobile (plasmids, integrons, and quinolone resistance genes named qnr) and innate genetic elements (mutations in topoisomerases) in determining the resistance phenotype of all the four species of over a span of ten years.

摘要

为了解[具体细菌名称]高耐药性的遗传基础,从印度加尔各答传染病医院获取了95株[具体细菌名称]临床分离株(2001 - 2010年)。93株分离株对三种或更多抗生素耐药。对萘啶酸、甲氧苄啶、链霉素和复方新诺明的耐药在该群体中最为常见。聚类分析表明,与其他[相关细菌名称]物种相比,[具体细菌名称]菌株的克隆相关性更强。详细分析了移动遗传元件和染色体携带的耐药因子的作用。整合子分析表明该群体中2类和非典型1类整合子占优势。典型1类整合子仅存在于一株[具体细菌名称]分离株中,携带甲氧苄啶耐药编码基因[具体基因名称],而非典型1类整合子携带负责对甲氧苄啶、氨基糖苷类和β - 内酰胺类耐药的[具体基因名称]或[具体基因名称]基因盒。2类整合子携带[具体基因名称]或[具体基因名称]基因盒。最重要的是,在[具体细菌名称]NK4846的2类整合子中发现了一个新的基因盒阵列[具体阵列名称]。在接合过程中,许多抗生素(如甲氧苄啶、复方新诺明、卡那霉素、氨苄青霉素和四环素)的耐药性状从亲本[具体细菌名称]分离株转移到受体[具体细菌名称],证实了质粒在耐药基因水平转移中的作用。来自代表性喹诺酮耐药分离株的拓扑异构酶喹诺酮耐药决定区的多个突变,如S→I、S→L和D→G/N/Y,可以解释各种喹诺酮的最低抑菌浓度值范围。据我们所知,这是第一份全面报告,描述了移动遗传元件(质粒、整合子和名为qnr的喹诺酮耐药基因)和固有遗传元件(拓扑异构酶突变)在十年间对所有四种[具体细菌名称]物种耐药表型的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验