Suppr超能文献

一种用于测量步态参数的环境系统的验证。

Validation of an ambient system for the measurement of gait parameters.

作者信息

Dubois Amandine, Bresciani Jean-Pierre

机构信息

Department of Medicine, University of Fribourg, Fribourg, Switzerland.

出版信息

J Biomech. 2018 Mar 1;69:175-180. doi: 10.1016/j.jbiomech.2018.01.024. Epub 2018 Feb 2.

Abstract

Fall risk in elderly people is usually assessed using clinical tests. These tests consist in a subjective evaluation of gait performed by healthcare professionals, most of the time shortly after the first fall occurrence. We propose to complement this one-time, subjective evaluation, by a more quantitative analysis of the gait pattern using a Microsoft Kinect. To evaluate the potential of the Kinect sensor for such a quantitative gait analysis, we benchmarked its performance against that of a gold-standard motion capture system, namely the OptiTrack. The "Kinect" analysis relied on a home-made algorithm specifically developed for this sensor, whereas the OptiTrack analysis relied on the "built-in" OptiTrack algorithm. We measured different gait parameters as step length, step duration, cadence, and gait speed in twenty-five subjects, and compared the results respectively provided by the Kinect and OptiTrack systems. These comparisons were performed using Bland-Altman plot (95% bias and limits of agreement), percentage error, Spearman's correlation coefficient, concordance correlation coefficient and intra-class correlation. The agreement between the measurements made with the two motion capture systems was very high, demonstrating that associated with the right algorithm, the Kinect is a very reliable and valuable tool to analyze gait. Importantly, the measured spatio-temporal parameters varied significantly between age groups, step length and gait speed proving the most effective discriminating parameters. Kinect-monitoring and quantitative gait pattern analysis could therefore be routinely used to complete subjective clinical evaluation in order to improve fall risk assessment during rehabilitation.

摘要

老年人的跌倒风险通常通过临床测试来评估。这些测试包括医疗保健专业人员对步态进行的主观评估,大多数情况下是在首次跌倒发生后不久进行。我们建议通过使用微软Kinect对步态模式进行更定量的分析,来补充这种一次性的主观评估。为了评估Kinect传感器用于这种定量步态分析的潜力,我们将其性能与金标准运动捕捉系统OptiTrack的性能进行了基准测试。“Kinect”分析依赖于专门为该传感器开发的自制算法,而OptiTrack分析依赖于“内置”的OptiTrack算法。我们测量了25名受试者的不同步态参数,如步长、步幅持续时间、步频和步态速度,并比较了Kinect和OptiTrack系统分别提供的结果。这些比较使用了Bland-Altman图(95%偏差和一致性界限)、百分比误差、Spearman相关系数、一致性相关系数和组内相关。两个运动捕捉系统的测量结果之间的一致性非常高,表明与正确的算法相结合,Kinect是一种非常可靠且有价值的步态分析工具。重要的是,测量的时空参数在不同年龄组之间有显著差异,步长和步态速度被证明是最有效的区分参数。因此,Kinect监测和定量步态模式分析可以常规用于完成主观临床评估,以改善康复期间的跌倒风险评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验