Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine , University of Zurich , Zurich CH-8057 , Switzerland.
Anal Chem. 2018 Mar 6;90(5):3531-3536. doi: 10.1021/acs.analchem.7b05387. Epub 2018 Feb 13.
High resolution mass spectrometry and modern data independent acquisition (DIA) methods enable the creation of general unknown screening (GUS) procedures. However, even when DIA is used, its potential is far from being exploited, because often, the untargeted acquisition is followed by a targeted search. Applying an actual GUS (including untargeted screening) produces an immense amount of data that must be dealt with. An optimization of the parameters regulating the feature detection and hit generation algorithms of the data processing software could significantly reduce the amount of unnecessary data and thereby the workload. Design of experiment (DoE) approaches allow a simultaneous optimization of multiple parameters. In a first step, parameters are evaluated (crucial or noncrucial). Second, crucial parameters are optimized. The aim in this study was to reduce the number of hits, without missing analytes. The obtained parameter settings from the optimization were compared to the standard settings by analyzing a test set of blood samples spiked with 22 relevant analytes as well as 62 authentic forensic cases. The optimization lead to a marked reduction of workload (12.3 to 1.1% and 3.8 to 1.1% hits for the test set and the authentic cases, respectively) while simultaneously increasing the identification rate (68.2 to 86.4% and 68.8 to 88.1%, respectively). This proof of concept study emphasizes the great potential of DoE approaches to master the data overload resulting from modern data independent acquisition methods used for general unknown screening procedures by optimizing software parameters.
高分辨率质谱和现代的非靶向数据独立采集(DIA)方法可实现通用未知物筛查(GUS)程序。然而,即使使用了 DIA,其潜力也远未得到充分利用,因为通常在非靶向采集后会进行靶向搜索。应用实际的 GUS(包括非靶向筛查)会产生大量的数据,必须加以处理。优化用于特征检测和命中生成算法的数据处理软件的参数可以显著减少不必要的数据量,从而减轻工作量。实验设计(DoE)方法可以同时优化多个参数。首先,评估参数(关键或非关键)。其次,优化关键参数。本研究的目的是在不遗漏分析物的情况下减少命中数。通过分析用 22 种相关分析物和 62 个真实法医案例加标的血样测试集,比较优化后的参数设置与标准设置。优化后,工作量明显减少(测试集和真实案例的命中数分别减少了 12.3%和 3.8%至 1.1%),同时识别率提高(测试集和真实案例的识别率分别提高了 68.2%和 68.8%至 86.4%和 88.1%)。本概念验证研究强调了 DoE 方法在优化软件参数方面的巨大潜力,可用于处理通用未知物筛查程序中现代非靶向数据独立采集方法所产生的大量数据。